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Abstract
The increasing integration of Visual Language Models (VLMs) into visualization systems demands a comprehensive under-
standing of their visual interpretation capabilities and constraints. While existing research has examined individual models,
systematic comparisons of VLMs’ visualization literacy remain unexplored. We bridge this gap through a rigorous, first-of-
its-kind evaluation of four leading VLMs (GPT-4, Claude, Gemini, and Llama) using standardized assessments: the Visualiza-
tion Literacy Assessment Test (VLAT) and Critical Thinking Assessment for Literacy in Visualizations (CALVI). Our method-
ology uniquely combines randomized trials with structured prompting techniques to control for order effects and response
variability - a critical consideration overlooked in many VLM evaluations. Our analysis reveals that while specific models
demonstrate competence in basic chart interpretation (Claude achieving 67.9% accuracy on VLAT), all models exhibit sub-
stantial difficulties in identifying misleading visualization elements (maximum 30.0% accuracy on CALVI). We uncover distinct
performance patterns: strong capabilities in interpreting conventional charts like line charts (76-96% accuracy) and detect-
ing hierarchical structures (80-100% accuracy), but consistent difficulties with data-dense visualizations involving multiple
encodings (bubble charts: 18.6-61.4%) and anomaly detection (25-30% accuracy). Significantly, we observe distinct uncer-
tainty management behavior across models, with Gemini displaying heightened caution (22.5% question omission) compared
to others (7-8%). These findings provide crucial insights for the visualization community by establishing reliable VLM eval-
uation benchmarks, identifying areas where current models fall short, and highlighting the need for targeted improvements
in VLM architectures for visualization tasks. To promote reproducibility, encourage further research, and facilitate bench-
marking of future VLMs, our complete evaluation framework, including code, prompts, and analysis scripts, is available at
https://github.com/washuvis/VisLit-VLM-Eval.

CCS Concepts
• Human-centered computing → Information visualization;

1. Introduction

Large Language Models (LLMs) and Visual Language Models
(VLMs) are emerging tools in data analysis and visualization, at-
tracting considerable attention for their potential to address chal-
lenges faced by researchers and practitioners [MDW∗23,HLL∗24].
One of the most promising aspects of LLMs and VLMs is their
ability to assist individuals with low vision, making visual data
more accessible and understandable [LM22, SEN24]. They can
also help mitigate information overload [TCD∗24, WHB∗24] or
enable individuals who lack formal training to generate visu-
alizations and engage with data through natural language, ask-
ing questions and receiving answers in a conversational manner
[CLL∗24, SS23, SEN24]. This democratization of data interaction
can have a significant impact on how users interact with and inter-
pret information.

Yet, while VLMs offer exciting prospects, there remain substan-
tial questions about their capabilities, limitations, and reliability in

visualization tasks, particularly when compared to human perfor-
mance. Recent research activities in the visualization community
are driven by the following questions: To what extent can VLMs
effectively interpret and reason about visual information? How
do their visualization literacy and perception abilities compare to
those of humans? and Can VLMs be trusted for use in complex
data-driven environments? These questions are essential because
understanding VLMs’ strengths and weaknesses could guide their
application and help establish whether they are suitable for real-
world use or require further development to meet needs.

To address these questions, recent work in the visualization com-
munity has examined VLM capabilities, including efforts to repli-
cate foundational perceptual studies and explore applications such
as natural language interaction with data, automatic captioning, vi-
sualization generation for research and educational purposes, and
dataset creation for visualization tasks [GKS∗24, Váz24, LQ24,
CZX∗24,WHB∗24,KPR23,MS23]. These early studies offer valu-
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able insights, but they also reveal significant limitations. First,
some studies focus on single VLMs, overlooking the diversity in
model architecture and training approaches. Second, while several
methods have been proposed to assess people’s visualization liter-
acy [LKK16, GCK23, BMBH16, BRBF14, PO23, CLD∗23], there
is limited consensus on standardized benchmarks for VLM evalua-
tion. Furthermore, VLMs exhibit unique challenges, such as a ten-
dency to hallucinate or produce unreliable outputs that are highly
sensitive to prompt phrasing and order effects, calling into question
their robustness in visualization tasks [JLF∗23, LYT∗23].

To expand upon this crucial line of research, we present a com-
prehensive and detailed comparative analysis of four of the most
recognized VLMs — GPT-4, Gemini, Claude, and Llama — using
two standardized visualization literacy assessments: Visualization
Literacy Assessment Test (VLAT) [LKK16] and Critical Thinking
Assessment for Literacy in Visualizations (CALVI) [GCK23].

These assessments are meticulously designed to evaluate essen-
tial skills in reading, interpreting, and reasoning with various forms
of visual representations, offering a nuanced understanding of each
VLM’s competencies. Additionally, we compare the performance
of these VLMs against established human benchmarks to scruti-
nize how well these models respond to varying task types, adapt
to different visualization styles, and interpret potentially mislead-
ing design elements. To ensure the robustness of our findings, we
average the results over ten randomized trials to control for any
order effects or prompt sensitivities. Through this detailed inves-
tigation, we aim to provide a clearer picture of VLMs’ potential
and limitations in advancing the data visualization field. We make
the following contributions toward understanding the strengths and
limitations of VLMs for visual data interpretation:

• We show that VLMs can accurately analyze a range of visual
data formats. However, our findings also highlight that the ef-
fectiveness of these models varies significantly, influenced by
the specific task, visualization type, and the models themselves.
Among the models assessed, Claude stood out, demonstrating
superior performance.

• Our comparative analysis with human performance reveals both
promising capabilities and concerning limitations. VLMs ap-
proach or exceed human-level performance in specific tasks like
trend identification (75-80% accuracy compared to 70% human
average) and hierarchical structure detection (80-100% accuracy
compared to 90% human average).

• However, while powerful, they require careful consideration be-
fore deployment in complex data-driven environments. Their
strong performance in basic chart interpretation but poor relia-
bility in detecting visualization deception (maximum 30.0% ac-
curacy on CALVI compared to 39% human average) suggests
they are better suited as assistive tools rather than autonomous
systems.

• We provide a reproducible evaluation framework with random-
ized trials and structured prompting techniques to help assess
future VLM capabilities.

2. Related Works

Large Language Models (LLMs) and Visual Language Models
(VLMs) have transformed artificial intelligence by bridging tex-

tual and visual understanding. While LLMs excel in text pro-
cessing, VLMs expand these capabilities through advanced trans-
former architectures [BPA∗24], enabling sophisticated visual ques-
tion answering [GLL∗23, HXL∗24], image captioning [LLWL24,
CPG∗23], and multimodal capabilities [LMX∗22, Ope24]. These
capabilities evolved from Vaswani et al.’s [Vas17] transformer
architecture, progressing through GPT-1 [RNS∗18] to GPT-3
[Bro20]. The field advanced further with frameworks like Visu-
alBERT [LYY∗19] and VilBERT [LBPL19], while models like
CLIP [RKH∗21] and Flamingo [ADL∗22] demonstrated remark-
able zero-shot capabilities in visual tasks.

However, these systems face limitations in visual reasoning and
multi-modal learning. Key challenges include hallucinations —
where models generate convincing but factually incorrect outputs
— and sensitivity to prompt variations [JLF∗23]. Training data bias
presents another concern, as web-scale datasets can perpetuate bi-
ases and misinformation [BGMMS21]. Current research focuses
on improving model transparency and reliability through adversar-
ial training and debiasing algorithms [WDX∗22, SS24].

2.1. VLMs in Visualization Research

Despite the limitations mentioned earlier, research at the intersec-
tion of VLMs and visualization has expanded rapidly in recent
years, encompassing both the use of visualization techniques to
understand and improve VLMs and the application of VLMs to ad-
vance visualization systems and tools. Our work contributes to this
second research direction, where VLMs enable novel visualization
capabilities and applications. By understanding these strengths and
limitations, researchers and practitioners can better position LLMs
and VLMs for real-world applications while addressing their inher-
ent challenges.

Recent studies have shown that VLMs have a wide range of ap-
plications in visualization, from automated generation of visualiza-
tion code and charts to sophisticated natural language interfaces for
visual analytics systems [GKWK24,CZX∗24,TCD∗24]. These ap-
plications promise to enhance data literacy by making complex vi-
sualizations more accessible through natural language interaction
and automated guidance [CLL∗24]. However, this rapid adoption
has paralleled an increasing focus on rigorous evaluation. Under-
standing their capabilities, limitations, and reliability becomes cru-
cial as these models become more integrated into visualization sys-
tems. The scope and quick expansion of VLM applications in visu-
alization underscore the importance of thorough, systematic evalu-
ation approaches to ensure effective and responsible deployment in
real-world scenarios.

2.2. Visualization Interpretation and Understanding in VLM
Research

Most relevant to the current work, scholars have sought to explore
the capabilities of VLMs for tasks related to visualization. There
has been a series of recent studies addressing very similar research
questions [BS24, GKS∗24, Váz24, LQ24, CZX∗24]. Most relevant
to this work, Bendeck et al. [BS24] presented an empirical inves-
tigation of GPT-4’s visualization literacy tasks using VLAT, exam-
ining performance across 8 different types of tasks across 12 vi-
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sualization types. They demonstrated that while the model excels
at trend identification and design best practices, it struggles with
precise value retrieval and color discrimination, with GPT-4’s over-
all performance in the 16th percentile compared to humans. Sim-
ilarly, Guo et al. [GKS∗24] investigated VLMs’ perceptual capa-
bilities through a series of graphical perception tasks, finding that
VLMs can successfully replicate human perceptual judgments, par-
ticularly in tasks involving relative comparisons and trend analysis.
While this might seem to contrast with Bendeck et al.’s findings,
the difference lies in the type of tasks being evaluated - Guo et
al. [GKS∗24] focused specifically on perceptual judgment tasks. At
the same time, VLAT encompasses a broader range of visualization
interpretation skills.

Other work has sought to examine how well VLMs can iden-
tify misleading aspects of charts in addition to the basic ability
to read and understand charts. Islam et al. [IRM∗24] conducted a
comprehensive evaluation of LVLMs across five major chart rea-
soning tasks, including chart question answering, summarization,
and fact-checking. Their findings highlighted that while LVLMs
demonstrate strong natural language generation capabilities, they
also exhibit common issues such as hallucinations and data bias. In
particular, Lo et al. [LQ24] investigated VLMs’ ability to detect
misleading visualizations through an exploratory evaluation ap-
proach using a dataset of 21 distinct chart issues. While their work
showed promising potential for these models in supporting critical
thinking during data interpretation, their open-ended methodology
of explicitly asking about misleaders highlighted the need for more
structured evaluation frameworks. In many real-world scenarios,
identifying misleaders is not as straightforward. We take a differ-
ent approach using CAVI [GCK23], which uses targeted questions
addressing specific aspects of visual data with clearly defined re-
sponse options, including an option to indicate when answers are
impossible. This method facilitates a more natural identification of
misleaders and accommodates the complexities inherent in inter-
preting visual information.

Our approach overcomes key limitations of earlier studies by
controlling for order effects and prompt sensitivities through ran-
domization. This establishes a reproducible framework for future
evaluations as VLM technology continues to evolve. Our contribu-
tion is particularly timely, given the rapid advancement of VLMs
and the growing need for reliable benchmarks in visualization re-
search.

2.3. Assessment Frameworks for Visualization Literacy

The visualization community has developed several approaches for
measuring and understanding visualization literacy. Early work by
Börner et al. [BMBH16] pioneered the examination of public visu-
alization literacy through familiarity-based questions about various
data visualizations, revealing important insights about non-expert
comprehension patterns. Boy et al. [BRBF14] established founda-
tional methods using item response theory (IRT), though their work
focused primarily on basic chart types like line graphs, bar charts,
and scatterplots.

Building on these foundations, Lee et al. [LKK16] developed
the Visualization Literacy Assessment Test (VLAT), offering com-
prehensive evaluation across 12 visualization types through 53

multiple-choice items. Mini-VLAT [PO23] later emerged as a more
practical assessment tool while maintaining strong psychometric
properties. Ge et al. [GCK23] advanced the field by developing
CALVI specifically for assessing critical thinking about misleading
visualizations, introducing systematic evaluation of “misleaders”
through 45 validated items. Recent work by Cui et al. [CLD∗23]
has explored adaptive testing approaches, demonstrating compara-
ble reliability with reduced question sets.

While these assessments have proven effective for evaluating hu-
man visualization literacy, there remains a critical gap in their ap-
plication to VLMs. Despite the increasing use of VLMs in visu-
alization tasks, there is a lack of standardized benchmarking and
robust frameworks to assess these technologies across different vi-
sualization types and tasks. Our work addresses this gap by leverag-
ing VLAT and CALVI as established benchmarks, extending their
application to evaluate VLMs’ visualization literacy.

3. Methodology

Our methodology addresses three fundamental questions raised in
section 1 by investigating the extent of VLMs’ visual interpreta-
tion abilities, their comparative performance against human bench-
marks, and their reliability in real-world visualization tasks. This
comprehensive evaluation framework employs standardized assess-
ments to examine fundamental visualization comprehensive (abil-
ity to read and interpret) and critical thinking capabilities (ability
to detect misleading visualizations) across different VLMs.

3.1. Model Selection and Configuration

Our study focuses on the state-of-the-art VLMs representing differ-
ent visual-language understanding approaches. We selected these
models based on several practical considerations: First, they offer
stable, well-documented APIs that support consistent interaction
patterns, which are crucial for reproducible research. Second, they
can be deployed through cloud-based interfaces, eliminating the
need for specialized hardware and making our evaluation frame-
work accessible to a broader research community. Third, these
models are widely used in practical scenarios, from data explo-
ration to educational settings, making their evaluation particularly
relevant for real-world applications. We excluded models such as
Microsoft’s CoPilot since it utilizes GPT-4 as its underlying model.
Our final selection comprised four distinct VLMs, each represent-
ing different approaches to visual-language understanding:

• GPT-4o, developed by OpenAI, is an integrated visual and tex-
tual processing through a unified transformer architecture with
attention mechanisms [Ope24].

• Claude 3.5 Sonnet is an AI assistant developed by Anthropic
and employs constitutional AI principles to enhance reliability
and minimize hallucinations [Ant].

• Gemini 1.5 Pro, previously known as Bard and developed
by Google DeepMind, features end-to-end training on diverse
visual-textual datasets, optimizing multimodal understanding
[Dee].

• Llama3.2-vision is an open-source architecture with transparent
visual processing capabilities developed by Meta. It offers mod-
els like the 11B and 90B variants that support image reasoning
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tasks such as document-level understanding, captioning, and vi-
sual grounding [Met]. In this paper, we utilized the Llama 3.2
Vision 11B model.

We standardized several key configuration parameters across all
models to ensure consistent and reproducible results. We set the
temperature to 0, which minimizes response randomness by always
selecting the most probable output tokens. This setting eliminates
stochastic variation, making direct model comparisons more reli-
able. While alternative approaches—such as varying temperature
settings—could provide insights into response variability, our goal
was to establish a stable, deterministic benchmark. The max_tokens
parameter was set to 300, limiting response length while ensuring
sufficient detail for reasoning explanations. These settings priori-
tize deterministic behavior for our evaluation.

3.2. Assessment Framework

Our evaluation employs VLAT and CALVI, selected over alter-
natives like Mini-VLAT [PO23] and specialized tests [FDL20,
FDWL22,CLD∗23] for their comprehensive coverage of visualiza-
tion tasks and chart types.

• Visualization Literacy Assessment Test (VLAT) provides a
rigorous evaluation framework based on Classical Test Theory
(CTT) [DeV06], which analyzes item performance through ba-
sic statistics like item difficulty and discrimination indices, and
it comprises of 53 multiple-choice items across 12 visualization
types. Originally validated with 200 participants, it includes an
“Omit” option and employs a correction-for-guessing formula
(Equation 1) [DE73, Fra88] to adjust scores based on incor-
rect responses. The test’s complete-item approach enables di-
rect comparison between human and VLM performance, with
human scores typically ranging from 10.05 to 43.67 (M=28.82,
SD=8.16) on the corrected scoring scale.

• Critical thinking Assessment for Literacy in Visualizations
(CALVI) employs Item Response Theory (IRT) [ER13], which
models the probability of correct responses based on both item
properties and test-taker abilities to assess critical thinking
through 45 items targeting various misleader types. The test con-
sists of “trick” items using misleading and erroneous visualiza-
tions and “normal” items using well-formed visualizations in-
spired by VLAT. In its original validation study with 497 par-
ticipants, each participant completed 30 items - 15 trick items
randomly sampled from the bank of 45 items and 15 fixed nor-
mal items. The normal items serve as a baseline for assessing
basic visualization interpretation abilities. Our study implements
CALVI differently by having VLMs complete the full set of 45
trick items to enable comprehensive evaluation. In its original
validation with human participants, performance on trick items
ranged from 0% to 93% (M=39%, SD=16%). While this sam-
pling approach complicates direct human-VLM comparisons,
CALVI’s systematic coverage of visualization deception makes
it invaluable for assessing VLMs’ critical analysis capabilities.

We chose these assessments’ complementary strengths in evaluat-
ing different aspects of visualization literacy. Together, they pro-
vide a comprehensive framework for assessing both basic visualiza-
tion interpretation skills and critical thinking abilities in the context
of potentially misleading visualizations.

3.3. Prompt Engineering and Design

During prompt development, we began with a simple format:
“Please select the correct option(s) from the given choices. Re-
spond with the chosen option number(s) followed by ‘Why:’ and
then your explanation.” However, pilot testing revealed two key
limitations: VLMs did not choose the “Omit” option unless explic-
itly prompted, and their unstructured responses made it challenging
to extract choices and explanations systematically. These findings
led to the development of more structured prompts, building upon
work by Bendeck et al. [BS24], who evaluated GPT-4’s visualiza-
tion literacy capabilities.

As shown in Figure 1, we designed standardized prompts for
both VLAT and CALVI assessments. The VLAT prompt explicitly
instructs models to select answers based solely on chart information
while discouraging guessing, with clear instructions about using
the “Omit” option for uncertain responses. The CALVI [GCK23]
prompt follows a similar format, emphasizing response organiza-
tion and basing decisions purely on chart information.

These prompts were designed to elicit structured responses
that facilitate systematic analysis while maintaining consistency
with the original assessment frameworks. The explicit format-
ting instructions ensure that model responses can be automatically
processed and evaluated across multiple runs. Additionally, the
prompts emphasize the importance of basing answers solely on the
provided visualizations, helping to isolate the models’ visualization
literacy capabilities from their broader knowledge base.

3.4. Evaluation Protocol

Each question is evaluated 10 times per model to account for po-
tential variations in model responses. The questions are shown one
at a time to prevent context contamination and to control the API
rate limits. This also mitigates the potential interference between
diverse visualization tasks while keeping consistent testing condi-
tions across all models. The response collection follows a struc-
tured format, recording final answers and explanatory reasoning.
For VLAT, we track the use of the “Omit” option as an indicator of
model uncertainty. This data collection enables detailed analysis of
model performance and decision-making patterns.

4. Visualization Literacy Assessment Results

Our evaluation results in Table 1 represent averaged performance
across 10 independent runs for each model on both VLAT and
CALVI assessment under the Random condition. We report aver-
age across 10 runs to provide stable performance estimates. This
extends beyond prior work by Bendeck et al. [BS24], which used 3
runs. Our pilot studies comparing 5 versus 10 runs revealed signifi-
cant variance in model outputs, justifying our choice of 10 runs for
more reliable measurements. The mean values with standard devia-
tion offer insights into both performance level and consistency, en-
abling meaning comparisons with prior works. This repeated eval-
uation approach is crucial because VLMs can produce varying re-
sponses to the same question across runs, even with temperature set
to 0.

We first examine the corrected scores of both human and VLM
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Figure 1: VLAT (left) and CALVI (right) prompt templates used for VLM evaluation.

performance on VLAT. The corrected score (CS) for each model
was computed using the formula established by Lee et al. [LKK16]:

CS = R− W
C−1

(1)

where R represents the raw score (correct answers), W indicates
incorrect answers, and C denotes number of choices available for
each item. This formula adjusts for guessing by penalizing incor-
rect responses based on the number of possible choices. As shown
in Table 2, our analysis encompasses 10 independent evaluation
runs for each VLM, providing robust performance metrics com-
pared against the original VLAT study’s 191 human participants.
Human participants achieved higher corrected scores (M=28.82)
than most VLMs, though CLAUDE approached human-level per-
formance with a corrected score of 28.96. Notably, VLMs showed
consistent performance across runs, evidenced by lower standard
deviations (0.77-2.67) than humans (8.16).

The results reveal variations in VLMs’ ability to understand and
interpret visualizations across both assessments. CLAUDE demon-
strates superior performance in VLAT with an accuracy of 67.9%,
outperforming other models ( GPT: 49.8%, GEMINI: 42.5%,
LLAMA: 43.8%). However, all models show notably lower perfor-
mance on CALVI, with accuracies ranging from 21.8% ( CLAUDE)
to 30.0% ( GEMINI). This considerable performance gap between
VLAT and CALVI suggests that while VLMs have developed rea-

Model VLAT (%) CALVI (%)
Mean Std. Dev. Mean Std. Dev.

Human 65.5 13.3 39.0 16

CLAUDE 67.9 1.5 21.8 3.9
GPT 49.8 3.3 28.2 1.8
GEMINI 42.5 3.0 30.0 4.4
LLAMA 43.8 3.6 24.4 6.0

Table 1: Average model performance and standard deviation
across 10 runs compared to human baseline, under the Random
condition where both questions and answer options were random-
ized.

Table 2: Comparison of Humans and VLMs on VLAT

Model Score Type Mean (M) Range SD

Human [LKK16] Regular 34.72 (14, 50) 7.05
Corrected 28.82 (10.05, 43.67) 8.16

CLAUDE Regular 36.00 (35, 37) 0.77
Corrected 28.96 (27.55, 30.38) 1.10

GPT Regular 26.40 (23, 29) 1.74
Corrected 15.39 (10.58, 19.06) 2.47

GEMINI Regular 22.50 (20, 26) 1.57
Corrected 9.87 (6.34, 14.82) 2.21

LLAMA Regular 23.20 (20, 26) 1.89
Corrected 10.86 (6.34, 14.82) 2.67

sonable capabilities for basic visualization interpretation tasks, they
struggle significantly with identifying and reasoning about mislead-
ing elements in visualizations.

4.1. Performance Across Chart Types

Model performance analysis across different chart types reveals
distinct patterns in VLMs’ visualization interpretation capabilities
and their relationship to human performance, as shown in Fig-
ure 2. While humans maintain relatively consistent performance
across visualization types, VLMs exhibit considerable variabil-
ity. CLAUDE demonstrates superior performance across most chart
types, achieving perfect accuracy (100%) on both 100% stacked
bar charts and pie charts (compared to human performance of 80-
90%), with exceptional performance on histograms (93.3%) and
line charts (96.0%). All models show strong capabilities in line
charts ( CLAUDE: 96.0%, GEMINI: 80.0%, GPT: 62.0%, LLAMA:
76.0%).

However, performance degrades significantly with visualiza-
tion complexity, particularly with bubble charts encoding mul-
tiple variables simultaneously (accuracy range: 18.6-61.4%). An
interesting pattern emerges in spatial visualization interpretation:
while models perform well on treemaps ( GPT: 100%, GEMINI:
66.7%, LLAMA: 60.0%), they struggle with map-based visual-
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Figure 2: Model performance comparison across different visualization types in VLAT. Each plot shows mean accuracy with 95% confidence
intervals, comparing VLMs against human performance.

Figure 3: Model performance comparison across different visualization tasks in VLAT. Each plot shows mean accuracy with 95% confidence
intervals, comparing VLMs against human performance.

izations (26.7-53.3%) compared to more consistent human perfor-
mance. This disparity suggests stronger capabilities in processing
hierarchical structures over geographic relationships. Basic visual-
ization types like area charts and scatterplots show notable perfor-
mance variation, highlighting inconsistencies in visual processing
compared to the more uniform human performance patterns.

These patterns, i.e., excelling in structural analysis while strug-
gling with precise numerical tasks and complex spatial relation-
ships, align with broader findings in VLM research. Alnegheimish
et al. [ANBEV24] found that deep learning models outperform
VLMs by approximately 30% in anomaly detection. In contrast,
Liu et al. [LHZ∗24] demonstrated that VLMs require strategies like
knowledge distillation for effective time series analysis.

4.2. Task-Specific Performance

The analysis of task-specific performance reveals nuanced patterns
in how VLMs handle different visualization challenges, particu-
larly compared to human benchmarks. Figure 3 gives an overview

of these patterns on various visualization tasks and highlights sur-
prising strengths of the VLM capabilities along with significant
weaknesses.

VLMs have shown great ability in pattern recognition and under-
standing of structure in tasks. Hierarchical structure identification is
a particular strength, with CLAUDE, GEMINI, and GPT achieving
perfect accuracy (100%) and LLAMA maintaining strong perfor-
mance (80%), all above typical human performance of 90%. Sim-
ilarly, the models show consistent strength in finding correlations
and trends at about 75-80%, which closely approaches human lev-
els of 70%. This high performance in pattern-based tasks suggests
that VLMs have developed robust capabilities in recognizing and
interpreting systematic relationships within visualizations.

However, the performance terrain changes dramatically in tasks
requiring precise numerical knowledge or more complex analytical
reasoning. An analysis of value retrieval and evaluative tasks re-
veals significant disparities between models: while CLAUDE per-
forms exceptionally well (≈ 71%), even surpassing standard hu-
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man performance, other models demonstrate considerably lower
accuracy ( LLAMA: 22.3%, GEMINI: 37.1%). This performance
gap suggests that reasonable numerical interpretation is not inher-
ent in VLMs but instead largely determined by specific architec-
tural features or training methods.

Anomaly detection presents another revealing challenge, with
performance ranging from 25% ( GEMINI) to 50% ( CLAUDE),
compared to consistent human performance around 50%. This
task, requiring both pattern recognition and deviation identifica-
tion, seems to push the limits of current VLM capabilities. Inter-
estingly, on range determination tasks, some VLMs even outper-
form humans, with CLAUDE achieving 80-90% accuracy, whereas
human performance is 45%. This unexpected superiority in some
quantitative tasks indicates possible advantages of computational
approaches in specific analytical contexts.

The most pronounced human-VLM performance differences ap-
pear in tasks requiring the integration of multiple visual elements
or precise numerical comprehension. While humans maintain rel-
atively consistent performance across diverse task types, VLMs
show marked variability, particularly in tasks demanding detailed
analysis or complex inference. These findings align with broader
research on VLM limitations in numerical reasoning and anomaly
detection [ANBEV24], suggesting the need for specialized strate-
gies like knowledge distillation to enhance performance [LHZ∗24].
The observed patterns point to fundamental architectural limita-
tions in processing complex numerical relationships, providing
clear directions for future VLM development.

4.3. Uncertainty Analysis

Adding an “Omit” option in VLAT brings rich insights into how
VLMs handle uncertainty in visualization interpretation tasks.
Models exhibit distinct patterns in their uncertainty expression,
as shown in Table 3. GEMINI has the highest propensity to ac-
knowledge uncertainty, choosing to omit responses for 22.5% of
questions (averaging 11.9 omissions per run). This conservative
approach reflects a greater awareness of uncertainty compared to
other models.

Table 3: “Omit” response frequency by model across 10 runs,
shown as counts and percentages of total VLAT questions.

Model Average Omits Range Percentage (%)

CLAUDE 4.3 4–6 8.1
GPT 3.8 2–6 7.2
GEMINI 11.9 11–14 22.5
LLAMA 4.3 3–6 8.1

5. Critical Thinking Assessment Results

A comparison of model performance across CALVI’s misleader
types reveals systematic patterns in VLMs’ ability to detect visual-
ization deceptions, as shown in Figure 4. All models detect missing
normalization errors with 100% accuracy (except LLAMA at 10%).
Models also demonstrate strong capabilities in detecting concealed

uncertainty, with CLAUDE and GEMINI showing particularly high
performance (100% and 90%, respectively). Interestingly, models
show varied capabilities in specific misleader categories. GPT is
good at detecting cherry picking (80%), while LLAMA shows su-
perior performance in identifying misleading annotations (80%).
However, all models struggle significantly with certain types of
misleaders:

• Missing Data: All models consistently fail to identify missing
data issues (0% accuracy across all models).

• Scale Manipulations: Performance is notably poor when deal-
ing with inappropriate scale orders (12-18%) and inappropriate
scale ranges (13.8-32.5%).

• Overplotting: Most models ( CLAUDE, GPT, GEMINI) com-
pletely fail to detect overplotting issues (0% accuracy), with only
LLAMA showing minimal capability (10%).

VLMs show an intriguing blind spot: while they excel at catching
obvious chart errors like missing labels, they’re surprisingly weak
at spotting subtler forms of visual deception.

5.1. Model-Specific Capabilities

Analysis of the models reveals distinct patterns in their ability to
detect specific visualization misleaders. CLAUDE demonstrates ex-
ceptional capabilities in identifying statistical and methodological
flaws, achieving perfect accuracy (100%) in both concealed uncer-
tainty and missing normalization categories. GPT exhibits partic-
ular strength in detecting cherry picking (80% accuracy), suggest-
ing advanced capabilities in identifying selective data presentation
bias. GEMINI shows balanced performance across categories with
notable excellence in concealed uncertainty (90%) and missing nor-
malization detection (100%). LLAMA , despite the lower overall
performance, shows specialized expertise in detecting misleading
annotations (80% accuracy), indicating potential in a contextual
analysis of visualization elements. These diverse performance pro-
files suggest that architectural and training differences among mod-
els may foster specialized capabilities in detecting specific types of
visualization deception. CLAUDE ’s perfect accuracy in uncertainty
detection likely stems from robust statistical reasoning capabilities,
while GPT ’s proficiency in identifying cherry-picking suggests
advanced pattern recognition mechanisms.

5.2. Comparative Analysis with Human Performance

The comparative analysis of CALVI performance presents dis-
tinct methodological considerations that affect human-VLM com-
parisons. While our VLM assessment utilized CALVI’s complete
set of 45 misleader questions (achieving 21.8%-30.0% accuracy),
the original human study followed a different protocol - approx-
imately 500 participants each completed 30 items total: 15 trick
items randomly sampled from the bank of 45 items (achieving
M=39%, SD=16%) and 15 fixed normal items (achieving M=80%,
SD=13%). This methodological distinction contrasts VLAT’s ap-
proach, where all participants completed the whole set.

Analysis of performance across misleader types (Figure 4) re-
veals intriguing patterns in deception detection capabilities. VLMs
show remarkable proficiency in certain areas, with CLAUDE, GPT,
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Figure 4: Comparison of VLM and human performance across different misleader types in CALVI assessment. Points show mean accuracy
with 95% confidence intervals. MS = Manipulation of Scales.

and GEMINI achieving perfect accuracy (100%) in missing nor-
malization, significantly outperforming humans (10%). Similarly,
for concealed uncertainty, CLAUDE and GEMINI demonstrate ex-
ceptional capabilities (100% and 90% respectively) compared to
humans (≈ 50%).

However, VLMs struggle with subtle manipulations. In detecting
unconventional scale directions, humans maintain approximately
50% accuracy while VLMs perform poorly (8-18%). The chal-
lenges extend to missing data detection, where all models show
0% accuracy, and overplotting identification, where most VLMs
fail. These limitations align with known constraints in processing
fine-grained visual information [IRM∗24] and numerical reason-
ing [ZGY∗24].

Some misleader types reveal more nuanced patterns. In detect-
ing misleading annotations, VLMs achieve varying success (50-
80%), approaching human performance levels. GPTshows partic-
ular strength in cherry-picking detection (80% accuracy), exceed-
ing human performance. These findings, supported by research on
VLM capabilities [NJT24], suggest that while these models can ef-
fectively identify obvious visualization errors, they struggle with
sophisticated forms of visual deception, requiring an integrated un-
derstanding of visualization principles and contextual reasoning.
This performance gap emphasizes the continued importance of hu-
man oversight in critical visualization analysis.

5.3. Common Failure Patterns

Analysis across all models reveals systematic weaknesses in visual-
ization deception detection, highlighting fundamental limitations in
current VLM architectures. Most critically, all four VLMs demon-
strate complete failure (0% accuracy) in identifying missing data
issues, indicating a universal inability to detect omitted informa-
tion in visualizations.

Scale manipulation detection emerges as another significant

challenge. Models consistently struggle with identifying inappro-
priate scale ordering and ranges, with accuracy varying from 2.0%
to 32.5%. This persistent weakness suggests fundamental limita-
tions in evaluating visualization scaling decisions. Similarly, com-
plex visualization issues, particularly overplotting detection, pose
substantial challenges, with three models showing complete failure
and LLAMA achieving minimal success (10% accuracy).

Function-related deceptions represent another area of universal
difficulty, evidenced by consistently poor performance in detect-
ing inappropriate scale functions (2.5 - 45.0%) and scale function
manipulation (8.0 - 18.0%). These patterns point to three funda-
mental limitations in current VLM architectures: inadequate detail-
oriented analysis capabilities [NJT24], limited mathematical rea-
soning [ZGY∗24], and weak structural analysis skills [IRM∗24].
These findings underscore critical areas requiring enhancement in
future VLM development, particularly in strengthening capabilities
for detailed visual analysis and mathematical relationship compre-
hension in data visualization.

6. Discussion

Our systematic evaluation of VLMs’ visualization literacy offers
insights for visualization researchers and practitioners. These find-
ings illuminate the potential and limitations of current VLM ar-
chitectures, providing a roadmap for future research and practical
applications in visualization systems. Below, we expand on the key
results, contextualize them within prior work, and propose avenues
for development.

6.1. Comparing Claude’s Visualization Literacy to Human
Performance

Among the models we evaluated, CLAUDE demonstrated human-
comparable performance on VLAT, marking a significant milestone
in VLM capabilities. With an overall accuracy of 67.9%, CLAUDE
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outperformed not only other VLMs but also approached human-
level performance in several visualization types, including stacked
area charts (85% vs 70% human accuracy), histograms (93.3%
vs 75%), and line charts (96% vs 85%). However, without trans-
parency regarding CLAUDE’s architecture, attributing this success
to specific technical innovations remains challenging.

Despite strong overall performance, CLAUDE showed con-
sistent weaknesses in spatial encoding tasks (maps, scatterplots,
treemaps), suggesting fundamental limitations in spatial reason-
ing common to current VLM architectures. This pattern indicates
a hierarchical nature in VLMs’ visualization literacy: strong per-
formance in pattern recognition (75-80% accuracy in trend identi-
fication) but degrading capabilities as tasks require more complex
reasoning or precise numerical analysis. Performance particularly
declined in tasks requiring multiple variable interpretation, such as
bubble charts (18.6-61.4% accuracy range across models).

This “complexity threshold” within current architec-
tures—whether due to attention mechanisms, spatial encoding
limitations, or training data—presents a crucial area for future
research. Understanding these limitations could guide the devel-
opment of hybrid models or specialized training approaches that
better handle complex visualization tasks while maintaining the
strong performance in basic pattern recognition.

6.2. Uncertainty Management Strategies

Our analysis reveals distinct patterns in how VLMs manage uncer-
tainty during visualization tasks. Most notably, GEMINI’s omis-
sion rate of 22.5% reflects a conservative approach to uncer-
tainty, reducing false positions but potentially limiting insights in
exploratory analysis where incomplete answers have value. This
finding aligns with research on uncertainty quantification in AI
[JLF∗23] and suggests the need for models with dynamic risk toler-
ance adjustable to specific tasks and contexts. Future visualization
systems could benefit from interfaces allowing users to calibrate
model uncertainty thresholds based on their application needs.

6.3. Poor Performance in Detecting Misleading Visualizations

All models, including CLAUDE, demonstrated limited capabili-
ties in identifying misleading visualizations, with CALVI accura-
cies ranging from 21.8% to 30.0%. This performance gap is partic-
ularly notable in detecting subtle manipulations such as inappro-
priate scale ordering (8-18% accuracy) and overplotting (0-10%
accuracy). These findings contrast with prior work where VLMs
showed better performance when explicitly prompted to evaluate
misleading elements [LQ24], suggesting that task framing signifi-
cantly influences performance.

The models showed striking disparities in their detection capa-
bilities: while achieving near-perfect accuracy in identifying miss-
ing normalization (100% for most models) and concealed uncer-
tainty (90-100% for top performers), they universally failed at de-
tecting missing data (0% accuracy) and struggled with scale manip-
ulations (13.8-32.5% accuracy). This pattern suggests that current
VLMs excel at identifying obvious structural issues but struggle
with more nuanced forms of visualization deception, highlighting

a critical gap in their analytical capabilities that requires attention
in future development.

6.4. VLM Strengths With Utility for Visualization Systems

The strong pattern recognition of VLMs make them valuable tools
for initial data exploration and basic chart interpretation. Their high
accuracy in trend identification (75-80%) and hierarchical structure
detection (80-100%) suggests applications in educational settings,
data journalism, or preliminary data analysis. However, their lim-
itations in detecting misleading visualizations necessitate careful
integration into practical applications.

We recommend a hybrid approach where VLMs handle initial
analysis tasks while maintaining human oversight for critical deci-
sions. Such an approach would employ VLMs for rapid initial pat-
tern detection and trend summarization, while implementing confi-
dence thresholds that trigger human review for complex or poten-
tially misleading visualizations. Additionally, visualization systems
should develop interfaces that clearly communicate model uncer-
tainty and limitations to users. This strategy would leverage VLMs’
computational efficiency while maintaining the critical thinking
and context awareness that human analysts provide, particularly in
scenarios where visualization misinterpretation could have signifi-
cant consequences.

7. Limitations

Our study provides important insights into VLM visualization lit-
eracy capabilities, but several important limitations must be con-
sidered. The fundamental limitations begin with our assessment
methodology. Although VLAT and CALVI are well-validated as-
sessment instruments in the field of visualization literacy, their
multiple-choice format may not capture the full range of VLM ca-
pabilities, potentially limiting the expression of more sophisticated
reasoning processes [GCK23, Bro20]. These assessments also can-
not evaluate important aspects of modern visualization practices,
such as interactive visualization interpretation or dynamic data rep-
resentations [HS12].

Our choices in model selection and configuration introduce
another layer of constraints. We evaluated four prominent VLMs
under specific parameter settings (temperature = 0), privileging
consistency and reproducibility. However, this approach may
not bring out the potential of these models under more flexible
configurations, such as those employing stochastic sampling or in-
corporating human feedback mechanisms [Ope24, TLI∗23]. Given
the rapid development in VLM technology, newer architectures
may mitigate some limitations we identified in visual processing
capabilities.

A more fundamental challenge stems from the intrinsic differ-
ences between human and VLM approaches to visualization pro-
cessing. While human analysts naturally incorporate domain exper-
tise and holistic reasoning strategies, VLMs operate within more
constrained computational frameworks [BCE∗23]. This cognitive
gap is particularly evident in CALVI tasks, where identifying subtle
misleading elements requires critical thinking abilities that current
VLM architectures struggle to replicate.
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8. Future Work

Our findings reveal several promising research directions for ad-
vancing VLM capabilities in visualization interpretation:

Fine-tuning VLMs for Visualization Literacy Fine-tuning
models on visualization-centric datasets could bridge the observed
gaps in spatial reasoning and quantitative comprehension. The
datasets should further include various types of visualizations, such
as deceptive designs like overplotting, skewed baselines, and mis-
leading scales, that would eventually train the model to recog-
nize and respond to misleaders more precisely [PRS∗15,LGS∗22].
Techniques such as reinforcement learning with human feedback
(RLHF) or curriculum learning could allow progressive improve-
ments in handling complex visualizations [OWJ∗22].

Leveraging Human-AI Synergy While VLMs exhibit clear
strengths in pattern recognition and trend analysis, their weak-
nesses in tasks requiring numerical precision or critical evaluation
necessitate hybrid frameworks. Such systems could use VLMs for
preliminary tasks, such as identifying patterns or anomalies, and
rely on human oversight for high-stakes decisions, such as iden-
tifying misleaders. This collaborative approach could leverage the
respective strengths of both humans and VLMs to improve accu-
racy and reliability in visualization tasks [WKR∗24].

Advancing Architectural Innovations Architectural advance-
ments, such as vision transformers and multi-modal learning ap-
proaches, hold promise for addressing the limitations identified in
our study [LZW∗23]. Another promising avenue is the exploration
of uncertainty quantification methods to make VLMs more robust
in ambiguous or incomplete visualizations, as shown by recent re-
search on probabilistic model outputs [APH∗21].

Enhanced Prompt Engineering Strategies Our findings high-
light how task framing impacts VLM performance in visualization
analysis. Future research should explore sophisticated prompting
strategies, such as chain-of-thought prompts or hierarchical task de-
compositions, to enhance VLMs’ critical analysis [WWS∗22]. This
could include developing standardized prompt templates for differ-
ent visualization tasks and investigating how varying levels of ex-
plicit instruction affect model performance in detecting misleading
elements. While our study used standardized prompts to ensure fair
comparisons, future work could explore more advanced strategies
like multi-shot prompting, chain-of-thought reasoning, and model-
specific prompt optimization [JMG∗24]. These tailored approaches
may provide deeper insights into model-specific strengths and en-
hance visualization literacy.

9. Conclusion

Our comprehensive evaluation of VLMs’ visualization literacy ca-
pabilities reveals a complex landscape of advances and limitations.
While some models approach human-level performance in basic vi-
sualization tasks ( CLAUDE achieving 67.9% on VLAT), they strug-
gle significantly with critical thinking and detecting visualization
deception (21.8-30.0% on CALVI). These stark performance vari-
ations demonstrate that current VLMs are best suited as assistive
tools rather than autonomous systems. Our reproducible framework
provides a foundation for future VLM evaluations while emphasiz-

ing the importance of balanced human-AI collaboration in visual-
ization analysis.
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