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Figure 1: Taxonomy of the components in user-adaptive visualizations. Input describes what type of information about the user is
captured. User Modeling specifies how that information is processed to create a model of the user. User Representation describes the set
of user characteristics that drives the system’s adaptation. Adaptation Assignment defines how the information in the user representation
is processed to make decisions on how to adapt, and Interventions captures the degree and type of adaptation.

Abstract
Research shows that user traits can modulate the use of visualization systems and have a measurable influence on users’
accuracy, speed, and attention when performing visual analysis. This highlights the importance of user-adaptive visualization
that can modify themselves to the characteristics and preferences of the user. However, there are very few such visualization
systems, as creating them requires broad knowledge from various sub-domains of the visualization community. A user-adaptive
system must consider which user traits they adapt to, their adaptation logic, and the types of interventions they support. In
this STAR, we survey a broad space of existing literature and consolidate them to structure the process of creating user-
adaptive visualizations into five components: Capture Input from the user and any relevant peripheral information. Perform
computational User Modeling with this input to construct a User Representation. Employ Adaptation Assignment
logic to identify when and how to introduce Interventions. Our novel taxonomy provides a road map for work in this area,
describing the rich space of current approaches and highlighting open areas for future work.

CCS Concepts
• General and reference → Surveys and overviews; • Human-centered computing → Information visualization; User mod-
els; • Information systems → Personalization;

1. Introduction

Data visualizations have long been used to amplify human cog-
nition and help make sense of the vast amount of data. However,
recent research has shown that the visual analysis process itself is
not universal [Ott20]. Each user experiences a visualization through
their own lens, as defined by their past experiences, personality
traits, cognitive abilities, and more. Moreover, studies investigating
the effect of user traits on visual analysis have shown that they can

have a measurable influence on users’ accuracy, speed, and atten-
tion when performing tasks (e.g., [CCTL15, COSM20, OCZC15]).

These findings suggest that it can be highly beneficial to person-
alize visualizations to specific user needs and preferences. The field
of user-adaptive visualizations investigates how visualizations can
adapt to the characteristics and preferences of the user [CCTL15].
This is similar to what the general research field of user-adaptive
systems [Jam07] does for other types of interactive systems, such
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as recommenders and intelligent tutoring systems. Such adaptation
can enhance the overall effectiveness of the visual analysis pro-
cess, as was, for instance, shown by Lallé et al. [LWC20]. Addi-
tionally, in adapting to the user, these interventions can help reduce
cognitive overload [ZK09, PYO∗13] and improve data discovery
rates [MHN∗22].

Despite the potential benefit of such a system, only some ex-
isting visualization tools instantiate this concept completely. This
is partly because realizing such a system involves addressing, in
a very different context, the challenges that have been targeted by
research in user-adaptive interaction for other domains. These chal-
lenges include addressing which user properties are relevant for
personalization, how a system can capture and infer these prop-
erties reliably and obtrusively to often limited and noisy input data,
and how to make suitable adaptation assignments from this infor-
mation and deliver the adaptations effectively while maintaining
user control and acceptance. This STAR aims to curate the collec-
tion of research often siloed in sub-disciplines, focusing directly on
enabling user-adaptive visualizations. In the context of this STAR,
we define user-adaptive visualizations as visual analysis systems
that sense and maintain a representation of the user and produce an
intervention that adapts to that user representation. Interactive vi-
sualizations that simply respond to clicks, drags, or other forms of
user input without maintaining a user representation and adapting
based on it are not considered user-adaptive within the scope of this
review.

Personalizing visualization systems to specific users can also
be achieved to some degree through user-driven customization,
namely by providing users with tools and affordances to cus-
tomize different aspects of a visualization. However, this approach
is fundamentally limited by the knowledge and expertise of the
user, which often does not include a detailed understanding of
the strengths and weaknesses of different visual encodings or an
awareness of their own cognitive load and analysis patterns [LC19].
With user-adaptive visualizations, the burden of making ‘optimized
choices’ can be transferred to the system. The degree of guidance
in an adaptive system can vary from non-invasive orientations, such
as recommendation systems [WMA∗16], to more prescriptive ap-
proaches, such as highlighting interventions [BLIC21] and legend
placement [GKG∗18]. Systems that support both user control and
computer-driven interventions are called mixed-initiative systems
[Hor99]. A successful mixed-initiative system enhances user cog-
nition, improving users’ ability to perform complex tasks [Ott20].
However, achieving an ideal balance between customization and
adaptation is non-trivial. Such systems must know when to adapt
and when to allow the user to take control, and provide customiza-
tion tools that are lightweight and do not burden the user. Ulti-
mately, a good mixed-initiative system must successfully manage
the dialogue between the system and the user.

In this STAR, we organize the space of user-adaptive visualiza-
tions by deconstructing the adaptation process into five main com-
ponents as shown in Figure 1: input, user modeling, user represen-
tation, adaptation assignment, and intervention. Further, we show-
case the different evaluation methods implemented in user-adaptive
visualization research in Section 10. These methods include quan-
titative measures (e.g., accuracy or performance metrics) and qual-

itative evaluations (e.g., user surveys, interviews, or focus groups).
Overall, this work provides a framework for organizing and under-
standing the space of user-adaptive visualizations and can help re-
searchers design and evaluate these systems. By understanding the
different components of user-adaptive visualizations, we can better
design and implement systems that provide users with effective and
personalized visual analysis experiences.

2. Comparison with related surveys

Although there are no previous surveys on this topic, four are
closely related. In particular, Liu et al. [LCO20] surveyed the im-
pact of individual differences (i.e., user characteristics) on the use
of data visualizations from papers published between 1987 and
2020. They classified the literature into four categories: individual
differences or traits, types of visualizations, tasks the user had to
perform, and measures recorded from the interactions. From these,
the individual differences are the only category that resembles one
of our components—namely, user representation. Moreover, the au-
thors focused solely on personality traits and cognitive abilities
as these are "invariant characteristics that distinguish one person
from another" and are considered stable in the long term [LCO20].
In contrast, this STAR expands the perspective of individual dif-
ferences by considering short-term characteristics that may vary
throughout an analysis session (e.g., cognitive load and analysis
goals).

Ceneda et al. [CGM19] surveyed and categorized the relevant lit-
erature on visual analysis systems that provide user guidance (i.e.
when the user guides the system) and system guidance (i.e., when
the system guides the user) to achieve an analysis objective. They
organized the prior work based on (1) the analysis objectives de-
fined by the user, (2) the intervention degree provided by the sys-
tem, (3) the guidance inference made by the system based on user
input, and (4) the guidance direction the user provides the system
for future help. We extend Ceneda et al.’s characterization of guid-
ance by also investigating different types of interventions, such as
pre-visualization, within-, and between-visualization.

Xu et al. [XOW∗20] focused their survey on analyzing user in-
teractions and visualization provenance from 2009 to 2019. Specif-
ically, they focus on answering the following three questions: (1)
why analyze provenance data, (2) what data to encode, and (3) how
to analyze the captured data. The value of provenance data to adap-
tive systems is very high as it helps inform them of the user’s ac-
tions and infer relevant user characteristics. We build on the work
done by Xu et al. [XOW∗20], who focused their survey on the
analysis of interaction and provenance data to include an analysis
of how provenance data is used to infer the user representation, a
backbone component of user-adaptive systems. User characteristics
derived from provenance data can range from high-level character-
istics such as analysis goals to low-level cognitive abilities such as
visual literacy and cognitive abilities.

Most recently, Zhou et al. [ZWG∗23] surveyed content recom-
mendation capabilities within visual analytics platforms. The au-
thors specifically studied how content recommendations surfaced
to users and proposed a four-dimensional design space to describe
these capabilities. Such dimensions are directness, forcefulness,
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stability, and granularity. These dimensions help characterize the
interface design choices for displaying recommended content to
users. In addition to the four dimensions, there are other impor-
tant factors to consider in the design space. These factors include
the location of the recommendation display, the temporal dynamics
of content updates, and the level of detail or specificity in the rec-
ommended content. These factors play a role in determining how
recommendations are presented and how users interact with them.
While Zhou et al. only focus on the dimensions that characterize a
design space in visual content recommendations, our work focuses
on the entire workflow of user-adaptive visualization systems, from
gathering user input to providing an intervention.

Our work builds on these prior surveys in three ways: (1) provid-
ing a pipeline that unifies the different components of user-adaptive
visualizations, (2) taking a more granular categorization for each
topic covered in the prior surveys, and (3) considering how the lit-
erature evaluates the success of a user-adaptive visualization.

3. Survey Methodology

3.1. Scope

User-adaptive visualizations are distinguished by their ability to
sense and maintain user representations, which subsequently in-
form tailored interventions. Therefore, papers included in our core
corpus must demonstrate a clear connection to this central concept.
To assemble our core corpus, we considered papers that contain
a system that tracks input to construct a user representation. This
inclusion criterion is driven by the critical notion that user knowl-
edge acquisition is at the core of user-adaptive visualizations. This
selective approach ensures that our literature review remains faith-
ful to the essence of user-adaptive visualizations, where the sys-
tem’s adaptability and personalized interventions hinge on its un-
derstanding of the user, achieved through the capture and analysis
of user-related data.

It’s important to note that our inclusion criterion for the core cor-
pus is based on the existence of these components rather than the
level of sophistication in data collection or modeling. Nevertheless,
to enhance the discussion in some less-studied subcomponents, we
also address some studies that do not necessarily meet this crite-
rion—or are in a field other than information visualization—to of-
fer a more holistic view of related state-of-the-art approaches that
can inform user-adaptive visualizations.

3.2. Corpus

We first employed an exploratory phase aimed at grasping the lan-
guage and nuances typical of the field which we explain in Ap-
pendix A. Our methodology consisted of a process to systemati-
cally identify relevant literature published in the past 20 years, as
shown in Figure 2. It included a widespread and systematic search
including web scraping top tier conferences and journals, scoring
papers based on the keywords and phrases identified in the prelim-
inary phase , and manual review of filtered papers.

Web Scraping: We scrapped data from the following ten top-tier
journals and conferences, spanning the years from 2003 to 2023,

Figure 2: Overview of the process implemented to come up with
the final corpus of 91 relevant papers.

Table 1: The set of keywords and phrases generated by phase 1 to
inform phase 2.

User Adaptive Visualization
• individual

traits
• individual

differences
• user

representation
• user abstraction
• user model
• user traits
• user skills
• cognitive
• personality
• mixed-initiative

• computer-generated
visualization

• generate
visualization

• aided visualization
• adapt visualization
• individual traits
• tailoring
• personalization
• recommend
• intervention
• adaptation
• adaptive
• guidance

• visual
analytics

• visual
• visualize
• visualization
• infovis

resulting in a dataset containing 28,189 papers. The selection of
these venues was guided by their reputation for publishing high-
quality research, their relevance to user-adaptive visualizations,
their propensity for featuring cutting-edge work, and their repre-
sentation of various interdisciplinary perspectives.

• Computer Graphics Forum (CGF, including EuroVis proceed-
ings),

• IEEE Transactions on Visualization and Computer Graphics
(VIS, including IEEE InfoVis),

• ACM Transactions on Graphics (TOG),
• ACM Transactions on Interactive Intelligent Systems (TiiS),
• Computers & Graphics (CG),
• Proceedings of ACM User Modeling, Adaptation and Personal-

ization (UMAP),
• Proceedings of ACM Advanced Visual Interfaces (AVI),
• Proceedings of ACM Computer-Human Interaction (CHI),
• Proceedings of International Joint Conference on Artificial Intel-

ligence (IJCAI),
• Proceedings of Intelligent User Interfaces (IUI).

In particular, CHI publishes an extensive array of papers across
diverse fields annually. Consequently, we selectively retrieved pa-
pers by applying a fuzzy search algorithm to the session names,
choosing those that scored more than 70 in relevance with the key-
words from Table 1. Fuzzy search allows for partial matches, pro-
viding relevance scores for each paper within each keyword cate-
gory.

Scoring Papers: We then scored each paper—based on its title
and abstract—by implementing a fuzzy search over sets of repre-
sentative keywords for each of the components of interest: User,
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Adaptive, and Visualization (Table 1). This approach ensured a nu-
anced assessment of paper relevance. To identify highly relevant
papers, we established two threshold criteria. Firstly, papers were
selected if they achieved a score greater than or equal to 90 for each
category. This initial criterion resulted in a subset of 157 papers.
Secondly, we selected papers with a visualization-related score of
95 or higher, coupled with a score of 95 or higher in at least one
other keyword category. This less stringent criterion produced a
subset of 858 papers. We united the two subsets, yielding a com-
bined set of 886 papers. These thresholds were defined considering
the trade-off between the relevance and the diversity of the papers
selected.

Manual Review: To further refine the corpus, the first author re-
viewed the titles and abstracts of this subset of papers after dis-
cussing 10% of them at random with the senior author for calibra-
tion to help identify specific guidelines to evaluate the remaining
90%". The ones that were irrelevant (e.g., topics unrelated to infor-
mation visualization nor user-focused) were excluded at this stage.
Following the initial review, 238 candidates for relevant papers re-
mained, with the potential to be within our scope.

3.3. Categorizing Papers

We employed a structured process for organizing and analyzing the
literature using computer-assisted qualitative and mixed methods
data software, the MAXQDA 2022 [VER21]. This methodology in-
volved several key steps. Initially, we uploaded the documents into
the software program to facilitate systematic analysis. We adopted
an open-coding method, which served as our primary tool for re-
viewing the literature.

During the open coding phase, we freely assigned labels to var-
ious aspects of user-adaptive visualizations. This initial coding
phase enabled us to gain a deeper understanding of common themes
and patterns within the literature. It was an iterative process, per-
mitting us to extend, refine, and merge codes into coherent groups.

The first author and one of the senior authors thoroughly exam-
ined each of the 238 candidate papers’ content independently. In
cases where the two authors held differing opinions on the coding
of certain papers, they engaged in discussions to resolve discrep-
ancies and reach a consensus on the final selection. Papers deemed
relevant were tagged for inclusion in this STAR paper. The final
subset comprised 91 papers. These systematic steps were instru-
mental in constructing a comprehensive and representative final
corpus of papers, ensuring that the ensuing literature review pro-
vides a thorough insight into the field of user-adaptive visualiza-
tions, as detailed in the previous subsection.

The ultimate outcome of this comprehensive coding process was
the categorization of the data flow in user-adaptive visualizations
into five main components with sub-categories as shown in Fig-
ure 1. Notably, three of these components, namely input, user rep-
resentation, and intervention, were identified as inputs and outputs,
while the remaining two, user modeling and adaptation assignment,
were recognized as integral processes within the system.

The categorization of the papers in our final corpus that englobe

the five components is reflected in Table 3, whereas the ones that
only focus on the first three are reflected in Table 4.

Additionally, we conducted a separate coding for evaluation met-
rics and methods employed in our corpus of relevant papers. We
classified the metrics into qualitative (i.e., system feedback, inter-
vention feedback, self-reflecting user feedback, and user experi-
ence) or quantitative (user performance, eye-tracking, provenance-
based, and cognitive load). On the other hand, we identified differ-
ent evaluation methods, such as empirical user studies, case studies,
use cases, and synthetic-user evaluation.

4. Overview of User-Adaptive Visualization Components

The primary contribution of this paper is a clear description of the
components of user-adaptive visualizations, taxonomies to catego-
rize the input, user representation, and intervention, as well as an
overview of the different user modeling and adaptation assignment
processes used in such context. We group the literature into which
components of user-adaptive visualizations they cover, namely: the
input that is captured by the system, the user modeling approach
employed, the user representation that is leveraged to guide the
adaptation of the visualization, the adaptation assignment method
used to translate the user representation into a visual adaptation,
and the intervention made to adapt the visualization to the user, as
shown in Figure 1.

The input captured by the system about the information
around the user. This input can take many forms: user activ-
ity information that is gathered while engaging with the visu-
alization, such as biometric data (e.g., eye gaze or heart rate) or
system interaction (e.g., clicking, dragging, or answering ques-
tions); user declarations as answers to specific questions, such
as questionnaires, psychological tests, or ratings; contextual in-
formation about the environment in which the interaction takes
place, such as the time of day, or the device being used; and pre-
existing user information, such as insights from social media.

The user modeling approach used by the system. This
refers to how the input is processed to create the model of the
user. Some examples include ready-made formulas that translate
user input into a different representation of the user, and infer-
ence or learning models.

The user representation are the set of properties and user
states that are modeled aiming to drive adaptation, such as per-
sonality traits, cognitive abilities, experience and biases, cogni-
tive states, analysis goals, and demographics.

The adaptation assignment method used to translate the
user representation into a visual adaptation. This can involve a
variety of techniques, such as expert knowledge hard-coded in
the method, and data-driven algorithms.

The intervention is employed to adapt the visualization to
the user. This can take many forms, such as highlighting certain
data points, changing the visual encoding of the data, or provid-
ing additional information or guidance to the user.
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Figure 3: Representation of the logical structure of the user’s in-
teraction with the visualization. The highlighted path represents the
user’s current line of inquiry [GW09].

5. Input

The first component of user-adaptive visualizations is the input
gathered from the user and the session. This could be either the first
time interacting with the visualization system or after one or more
interventions. This is then leveraged to generate a virtual represen-
tation of the user. This has historically presented a challenge due to
the difficulty of capturing and analyzing information about the user
and their environment [CNS05]. However, technological advances
have opened up novel ways of sensing and tracking cognitive traits,
physiological data, interaction patterns, and peripheral information
on their environment, such as device type or time of day. As a result,
some posit that adaptive visualization systems can provide more
customized interventions and recommendations [XOW∗20,Ott20].
We characterize the captured data into three types: user activity,
contextual information, and pre-existing user information.

5.1. User Activity

User activity input is any information collected from observing the
user during their session engaging with the visualization system,
whether through interactions with the system, through sensors that
capture biometric data, or user declarations provided by the user.

5.1.1. System Interactions

This refers to the information the user provides by interacting di-
rectly with the system. Examples of this data type include mouse
movements and clicks [CH07,BOZ∗14,OYC15,OCZC15,BGV16,
VH16,CLRT20], keyboard input, menu selections, or other actions
such as explicitly capturing user’s analysis goals [BGV16]. Figure
3 shows a representation of the logical structure of the user’s inter-
action with the visualization system [GW09].

User interactions have been proven useful to infer several user
characteristics such as analysis goals, cognitive abilities, and pref-
erences. In a study about predicting the user’s analysis goals to per-
form directing interventions, Gotz and Wen [GW09] leveraged user
interaction—or provenance—logs as implicit signals of the user’s
intent. They named their approach Behavior-Driven Visualization
Recommendation, which extracts behavior patterns from sequences
of user actions (e.g., queries, filters, or bookmarks) to drive the rec-
ommendation. Other interaction data (e.g., click rate, time to first

click) was found relevant to predict a user’s cognitive abilities at the
beginning of the task, in contrast with eye-tracking data [CLRT20].
This result confirmed the possibility of relying on interaction data
when it is not possible to gather biometric data, or it is possible
but there is a need for an adaptation experience at the start of the
visual analysis. Other work has relied on selections among visual-
ization alternatives to predict the user preferences for the follow-
ing tasks [Gra06,ML12]. In other fields (i.e., interactive interfaces,
cognitive tutors), this input has been recorded to predict different
user characteristics such as knowledge [CA95], learning [KC12],
task performance [CMN80], or emotions [BGW∗12].

System interaction data is highly reliable as it is readily avail-
able and not susceptible to external noise-generating factors,
which represents advantages over biometric data which needs
external sensors and is prone to noise (e.g., head movements,
glasses) [CLRT20]. It can also support the calculation of implicit
metrics such as provenance, the reading time of a specific text or
prompt, or the response time when solving a problem or answer-
ing a question [ZK09]. On the other hand, this type of user activity
input is not available in non-interactive visualization systems and
it cannot capture the user’s perceptual processes [CLRT20]. Even
more, they require the user to actively engage with the visualiza-
tion. This may not be feasible or even desired in circumstances
where the visualization experience is expected to be passive but
still with some degree of adaptation.

5.1.2. Biometric Data

This refers to information about the user’s physical or physiologi-
cal state. The visualization literature has captured several types of
biometric data, including heart rate, respiratory rate, and skin con-
ductance [CH09,PBC18], as well as facial expressions [CWEK15],
and brain sensing data (i.e., fNIRS and EEG) [PYO∗13,APM∗11].

The most prominent biometric user input for information visual-
ization research is eye-tracking data [SCC13, TCSC13, TSG∗14,
SCC14, LTCC15, GKG∗18, SSV∗18, CLRT20, SC20, BLIC21,
CLRT20,LTC21,SLH∗21,OKCP19], which may include the pupil
and head distance data, in addition to the eye gaze information.
Beyond the raw gaze data, some eye-tracking software includes
clustering algorithms to determine the areas of the visualization the

Figure 4: Example of eye-tracking data as biometric input. The
heat map represents fixation areas where the user spent the most
time looking at [SSV∗18].
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user focuses on. This type of input is commonly used in visualiza-
tion [GKG∗18,SSV∗18,TCC19,CLRT20,BLIC21,LTC21] as it is
an indicator of how much of the data the user is processing [Ray09],
and can serve as a proxy for the user’s analysis goals. For example,
Lallé et al. [LTC21] perform interventions according to the user’s
gaze fixation on specific references in a text. Figure 4 shows an
example of how different areas of interest in the visualization are
identified to inform the user modeling.

Eye-tracking data has been shown to provide insights into as-
pects of visual analysis such as success and confusion. In a study
investigating user success in visual analysis, Spiller et al. [SLH∗21]
used eye-tracking data to assess both the effectiveness and effi-
ciency of such predictions by varying the interval size of the gaze
data collected. Summary statistics around fixations (i.e., the areas
where the user’s gaze focuses more) and saccades (i.e., the gaze
paths between fixations) have also provided insight into levels of
user confusion [LCC16a]. Other work has focused on how user
characteristics influence eye gaze patterns in decision-making tasks
with maps and deviation charts [LCC17], and analytic tasks with
bar and radar charts [TCCH12, TCSC13], as well as with bar and
line charts [OGGR16].

The body of work on emotion recognition in HCI often leverages
facial recognition as a form of input from the user [CKC08]. This
approach was applied to visualization by Cernea et al. [CWEK15],
where the authors create standardized visualization of emotions,
emotion prints, as read by facial expressions.

Among the few examples of collecting brain sensor data in visu-
alization systems, Peck et al. [PYO∗13] used fNIRS to evaluate vi-
sualizations by measuring the impact of visual design on the brain.
They found that fNIRS is an effective input to model brain activ-
ity derived exclusively from visual design. Similarly, Anderson et
al. [APM∗11] were able to leverage EEG measures, along with user
response times to visual tasks, to evaluate the burden different vi-
sualization techniques have on the users’ cognitive resources.

Skin conductance has also been tracked in the context of user-
adaptive visualizations, although on a much smaller scale. In a
study focused on providing guidance to frustrated users in visual
tasks, Panwar et al. [PBC18] measured users’ arousal and valance
from a combination of a galvanic skin response device and an eye
tracker. The authors were able to classify a user’s frustration state
which then helped inform the interventions.

Biometric data is often captured continuously, with no explicit
input from the user required [SLH∗21]. As a result, it can provide
rich data that captures variations in the user’s state throughout the
visual analysis process. The level of detail in this type of data sup-
ports adaptations to subtle changes in the user that may go unde-
tected in self-reported measures. Additionally, biometric data can
often be more objective than self-reported data.

5.1.3. User Declarations

User declaration is the form of input that encompasses explicit
information provided directly by the user. It serves as a pivotal
source of data that aids in adapting visualizations to align with in-
dividual user needs and preferences, especially in the early stages

Figure 5: An example of how the device used to display the visual-
ization serves as contextual information for an intervention. In par-
ticular, the intervention reduces the visualization size while updat-
ing the design to maintain the significance of the data [WLLM13].

of an adaptive visualization system or when some user charac-
teristics cannot be modeled indirectly through interactions. User
declarations are typically self-reported through surveys (e.g. pref-
erences, analysis goal, expertise) or gathered via specialized in-
struments, such as psychological tests or questionnaires, and en-
compass a broad spectrum of user-provided information, ranging
from demographic details [ADHC∗23] to more intricate aspects of
the user’s characteristics, including personality traits [CCH∗14a],
cognitive abilities [SCC13, TCSC13, SCC14, CCH∗14a], exper-
tise [TCSC13], and prior experiences [CH07, VH16, ADHC∗23].
Additionally, users might explicitly state their goals and intentions
when interacting with the visualization, specifying what insights
they aim to gain or tasks they wish to accomplish.

5.2. Contextual Information

Contextual information refers to user-independent input specific to
the situational context of the interaction session, including factors
such as device type, operating system, screen size, and location.
It can be dynamic between sessions, influencing how the system
adapts in real time. For example, a system over a large weather-
related dataset [ML12] leverages users’ location, season, and time
of day to personalize weather-related visualizations. By incorporat-
ing these elements, the authors were able to display only the most
relevant weather data to the user, thereby improving the user’s abil-
ity to analyze and interpret the information effectively.

Contextual information is also relevant for responsive vi-
sualizations, which can adapt based on the device screen
size [DGDLM15]. Figure 5 shows ViSizer, a framework for resiz-
ing visualizations while maintaining the significance of the regions
by adapting the design to the screen size [WLLM13]. Research that
investigates the impact of contextual cues, such as screen size, on
visual analysis can provide valuable insight for user-adaptive visu-
alizations. For example, Jakobsen & Hornbæk [JH13] studied the
effect of large displays on user interaction and found that the ben-
efits of larger displays may be countered by implementing multi-
scale navigation techniques (i.e zooming and focus+context). In an-
other example, Alves et al. [ARG∗20] analyzed the effect of wear-
ing glasses/contact lenses during the visualization experience, and
they found that neither had a significant effect on the experience.
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Figure 6: An example of a workflow for saving user interaction
data and leveraging it in future sessions within a network data vi-
sualization recommender system [CLWM11].

5.3. Pre-existing User Information

Pre-existing user information involves input derived from external
sources that exist prior to the current session, including user de-
mographics, historical interaction data, social media profiles, and
other integrated datasets from outside the immediate system. This
input type provides an understanding of the user based on accu-
mulated data over time and from various sources. For example,
Mouine & Lapalme [ML12] predicted a user’s preferences and
needs based on the history of the preferences and interactions of
similar users. The authors used clustering to group users who were
similar to the current user and then set the visualization variables
according to the visualizations of those users. Similarly, Crnovr-
sanin et al. [CLWM11] developed a visual recommendation sys-
tem that saves the interaction history of a user for future input to
collaborative filtering to help users navigate network data. Figure 6
shows their system’s workflow where the user interaction does not
only inform the current intervention but also gets stored for recom-
mendations in future sessions.

However, a downside of relying on pre-existing user information
is that external information sources may not be maintained regu-
larly and are susceptible to becoming outdated and inaccurate. This
paper, among others [Ott20,PYH∗12,LCO20], maintains that a per-
son’s state, traits, and experience influence their behaviors. Thus,
further studies are needed to evaluate the limitations of this data.

Summary and Open Areas

The space of possible input sources is vast, lending to numerous
possibilities for what a potential adaptive system can detect. In
this section, we categorized this input space into what we can
observe from the user, their environment, and historical or de-
mographic data. Much of the existing work in the visualization
literature has aimed to collect information that would aid in the

understanding of the user and her task, with disproportional
attention to learning from mouse and keyboard interactions
[XOW∗20].

This focus on commonly available input devices has, so far, led
to a somewhat narrow set of possibilities for what we can learn
from observation. In particular, the community has made impres-
sive strides in developing real-time adaptive systems by analyz-
ing the provenance of data elements and system actions. In other
words, the existing methods can track what someone is looking
at or paying attention to by observing mouse and keyboard inter-
actions or eye gaze (e.g., [BCS16, OGW19, LTC21]).

In contrast, physiological sensing has great potential for use in a
visual analytics setting to learn what someone is doing and pro-
vide insights into why. For example, eye-tracking can help bridge
the gap in the future because it can provide information about
fixation positions (the what), and we can also measure cognitive
load (the why) using pupillary dilations [Kli10]. Further, prior
work already demonstrates how to use eye-graze data in the real-
time setting, with Lallé et al. [LTC21] introducing an interface
that automatically highlights the visualization elements that cor-
respond to the portion of the text the reader is currently viewing.

However, capturing high-resolution biometric data (e.g., with
fNIRS or skin conductance) does not come without challenges.

First, the time and logistics of setting up sensors on or near users
for each visual analytics session. Second, biometric sensors are
often costly and limited in availability [CLRT20] and must be
precisely calibrated to provide valuable data. Eye-tracking, how-
ever, can overcome many of these challenges given the recent
commercialization of eye-tracking products, and eye movement
input is faster than other input devices (e.g., the user has to think
about moving the mouse before acting) [Jac93, JK03].

Furthermore, the process of collecting input data, especially in
the context of biometrics, can be notably challenging in to-
day’s technological landscape. Biometric sensors often necessi-
tate controlled environments that resemble laboratory conditions.
This controlled setting is essential to ensure the reliability and ac-
curacy of biometric data, as factors such as ambient light, noise,
and user comfort can significantly impact the quality of collected
information. Calibration and quality control of input data, par-
ticularly within research settings, are paramount concerns. Re-
searchers must meticulously manage and validate data to mit-
igate inaccuracies and ensure that the collected information is
trustworthy, ultimately contributing to the effectiveness of user-
adaptive visualization systems.

6. User Modeling

The second component of user-adaptive visualizations is the user
modeling technique leveraged to build the user representation. This
representation is then used to drive the visualization adaptation.

Explicit User Modeling Techniques involve directly transform-
ing user-provided inputs, such as manually entered data or ques-
tionnaire responses, into the user representation.
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One such technique that is quite common in user-adaptive visu-
alization research is a declarative approach where a characteristic
that will be part of the user representation is collected explicitly
from the user through direct input. This one-to-one mapping in-
volves obtaining specific information directly from the user, such
as demographics [VHW87,SCC13,TSG∗14,SCC14,GKG∗18], ex-
plicit analysis goals [MZJS18, WMA∗16], personal visual prefer-
ences [BGV16], and confusion [CHTS13].

Unlike general interaction feedback, this technique specifically
entails the user’s deliberate input of known characteristics that are
then used in the adaptation process. For example, users might ex-
plicitly select the variables they want to analyze [WMA∗16] or
choose the paragraph of text they want to focus on [MZJS18].
These explicit selections can be directly incorporated into the user
representation as analysis goals to guide the adaptive behavior of
the system, as shown in Figure 7.

The main advantage of this approach is its ease of implemen-
tation and interpretation as it directly maps the input to the user
representation. This enables the system to perform interventions
based on explicit and accurate data, with no inference, learning, or
scores being calculated. This method allows researchers to gather
data that could otherwise be hard to calculate, learn, or infer with
more sophisticated models. For instance, determining the age and
gender of a user, or their color-scheme preference, based solely on
their behavior during the visualization task is highly non-trivial.

This mapping presents a challenge when attempting to gather
more intricate data about the user. This includes cognitive abilities,
inherent biases, and even analysis goals that may change during the
visual exploration process. It can be difficult to accurately relate
this information to the system, as the user may not be fully aware
of their own traits or it may feel invasive to ask for this information
during the interaction. Moreover, complex user modeling, such as
machine learning, is required to infer and learn how user input can
give rise to their characteristics.

The other common explicit technique is questionnaire-based
modeling. It is used to infer information about the relevant user’s
characteristics by asking a set of questions to the user and deriving
a user representation from their answers. This differs from afore-
mentioned mapping in that the user does not explicitly provide the
information that will be part of the user representation.

In information visualization, the most common custom-made
questionnaires are the ones that ask users for their preferences on
visual characteristics on a Likert scale [SLC∗20]. In one study
that examined how user characteristics affect hierarchical relation-
ship understanding, Ziemkiewicz & Kosara [ZK09] asked partic-
ipants to rate how well certain statements described two hierar-
chical groups. The participants also ranked visual metaphors. The
authors then inferred their verbal metaphor preference by calculat-
ing a score for each group. Other questionnaires have been built
to assess different user characteristics. For instance, Carenini et
al. [CCH∗14a] leveraged this method to measure the users’ exper-
tise level with simple bar graphs as well as complex ones. However,
the authors did not find any significant effect related to these pre-
fetched expertise levels and expressed that there could have been
some bias when self-reporting.

On the other hand, questionnaires-based modeling has been ex-
tensively leveraged to identify which user characteristics to mea-
sure and adapt to [TCCH12] in user-adaptive visualizations. In this
regard, a type of user modeling questionnaire that has been widely
used is standardized tests from other fields (e.g. psychology), which
provide a robust way of assessing different user characteristics. For
instance, in one of the first studies on this topic, Conati & Ma-
claren [CM08] conducted a user study to evaluate whether spatial
abilities—tested with the Kit of Reference Tests for Cognitive Fac-
tors [EFH76]—and other user characteristics influence the effec-
tiveness of two alternative data visualization techniques. The goal
was to ascertain whether these individual user differences may be
used as predictors of visualization effectiveness in choosing among
the two alternative visualizations for a given task. They showed that
the cognitive ability known as perceptual speed can predict which
of the two target visualizations is most effective for a given user,
suggesting that adapting visualization selection to this trait may
improve user experience. Similar user studies have relied on other
standardized tests to identify the relevance of specific user charac-
teristics for other possible types of personalization in visualization
research. For example, Lee et al. [LKY∗19] leveraged a visual apti-
tude and reasoning test (i.e., Visualization Literacy Test [LKK17])
to study the correlation between visual literacy and different user
characteristics. They found that the need for cognition had a posi-
tive correlation with the user’s visual literacy, indicating that users
who enjoy cognitive endeavors are likely to be good at reading and
interpreting data visualizations.

Once the relevance of specific user characteristics that can be as-
sessed via standardized tests has been established, a user-adaptive
visualization could be designed by making each new user (i.e., a
user with partial or no user representation modeled by the system)
take the corresponding test and build the user representation from
this input. However, subjecting users to the added onus of filling out
questionnaires might not always be possible or desirable. Addition-
ally, modeling a user representation from questionnaires must con-
tend with the biases associated with any self-reported user informa-
tion [CCH∗14b]. Thus, researchers have looked at inferring the rel-
evant user characteristics from less explicit types of inputs via ma-
chine learning, as we discuss in the next subsection. In this case, the
user representation created by the questionnaire is used as ground
truth labels to train the machine learning models (e.g., [SCC13]).
Implicit User Modeling Techniques involve the process of infer-
ring user characteristics by analyzing observed behaviors and inter-
actions with the visualization system. The most common approach
is through machine learning models that leverage labeled data (i.e.,
supervised learning) or unlabeled data (i.e., unsupervised learning)
to train and make predictions on new, unseen users. In the context
of user-adaptive visualizations, the objective is to use existing data
to train models that can infer the characteristics that will be part of
the user representation from input information (i.e., user activity,
contextual information, pre-existing user information, or a combi-
nation of them) [XOW∗20].

There are several types of machine learning algorithms, each of
which differs in terms of the mathematical approach they employ
to solve the problem. The ones that have been applied the most in
the context of user-adaptive visualization systems are regression al-
gorithms, classification algorithms, clustering algorithms, and nat-
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Figure 7: Example of one-to-one mapping of the user’s analysis goal directly from their interaction with the system by selecting the para-
graph they want visual assistance for. The system extracts the relevant data from the text and performs an intervention to the visualizations
[MZJS18].

ural language processing. Regression algorithms rely on supervised
learning to predict continuous output, aiming to model a mathemat-
ical function from an observed pair of input and output. Applied in
the user-adaptive visualization context, they can predict user char-
acteristics that are measured on a continuum numerical range from
input data.

In a visualization study about predicting the user’s learning curve
measured by the response time, Lallé et al. [LTCC15] implemented
stepwise linear regression models with eye-tracking data and long-
term user characteristics such as locus of control as input. The au-
thors affirm that being able to fit learning curves is especially rele-
vant for user-adaptive visualizations because they model the user’s
initial expertise and their learning speed, two user characteristics
that can be very informative when choosing the interventions to
improve users’ engagement and performance.

When creating a user representation to drive adaptation, regres-
sion algorithms are best suited when a finer granularity of the
user characteristic being modeled is needed or beneficial to inform
the personalization. However, the finer-grained the prediction, the
harder it is from a machine-learning standpoint because it requires
larger amounts of training data. Sometimes it may be sufficient to
model the target user characteristics based on discreet categories
derived from the original continuous values. For instance, most of
the user studies to ascertain the impact of user characteristics that
we described in the previous subsection managed to detect an im-
pact for characteristics that were binarized based on the median
split of standardized test results (e.g., [SCC13, SCC14, CLRT20]),

suggesting that it is sufficient to represent these characteristics cat-
egorically in the user models.

A supervised machine learning user modeling able to predict
user characteristics as categorical values is a classification algo-
rithm. Work in user-adaptive visualizations has successfully lever-
aged traditional machine learning models such as logistic regres-
sion, decision trees, and random forests for these classification
tasks. For instance, logistic regression proved to be the winning
classifier to predict users’ high and low levels of cognitive abilities
such as perceptual speed and visual working memory from user
gaze data [SCC13, SCC14, GC15] in visualization studies involv-
ing users working with bar graphs.

Random forest proved to be the winning classifier in predicting
users’ confusion from both user actions and eye gaze when interact-
ing with a ValueChart visualization [LCC16a], frustration from the
user’s eye-tracking data as well as skin conductance information
when interacting with a visualization tool for scatter plots [PBC18],
and learning curves from eye-tracking data when performing visual
tasks over Bar Charts and ValueCharts [LCC16b]. Furthermore,
Conati et al. [CLRT20] showed that a random forest user model-
ing approach could predict visual working memory from eye gaze
data, as well as perceptual speed from a combination of interac-
tions and eye-tracking, during visualization processing of deviation
charts and maps. In all the studies above, several classifiers were
compared to identify the most accurate, and although the random
forest was the winner in many of the studies, trying multiple classi-
fiers is still the recommended approach because we still do not have
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Figure 8: Examples of neural network architectures as a machine
learning user modeling method that binary classifies the user’s
confusion during the visualization task [SC20]. (Left) GRU and
CNN architectures. (Right) VTNet architecture.

enough results to generalize how input data, visualization, and task
type might influence classifier performance.

There are also recent results on using deep learning models to
classify user characteristics relevant to user-adaptive visualizations.
This work is still limited because deep learning models usually re-
quire vast amounts of training data, usually unavailable in this do-
main, especially when looking at specialized input sources such
as eye-tracking data. However, by using various data-augmentation
techniques suitable for increasing the size of eye-tracking datasets,
Sims and Conati [SC20] successfully used a deep learning model
to improve the accuracy of classifying user confusion achieved
in [LCC16a]. Their model is a visuospatial-temporal network (VT-
Net) (Figure 8) that combines a convolutional and a recurrent net-
work to process raw gaze data both temporally and visually. An-
other work aiming to predict users’ visual search task success
from eye gaze data implemented MLSTM-FCN (Multivariate Long
Short Term Memory Fully Convolutional Network) to analyze time
series data from interactions with visualization systems [SLH∗21].
Given that this neural network architecture analyzes time series,
their dataset consisted of eye gaze data points with a frequency of
60 Hz. Moreover, the authors used full-length sequences to train
the network and compared the results with sequences of shorter
lengths, thus increasing the total training set. Classification al-
gorithms are appropriate for constructing the user representation
when the data on the dependent variable (i.e., the user characteris-
tic being modeled) is categorically labeled with ground truth val-
ues. Getting these ground truth values, however, can be challeng-
ing, for instance when we want to predict short-term user states
such as emotions or cognitive load, that evolve in real-time dur-
ing visualization processing. An alternative is to look at unsuper-
vised machine learning algorithms, which do not need labeled data.
One such class of algorithms is clustering, which groups data points
based on similarity metrics. Clustering has been used to model the
user’s visualization preference based on their interactions with the
visualization system [ML12]. In this work, the authors vectorized
the known users’ input (i.e., the visual preference and contextual
information) and implemented a k-means clustering algorithm, cat-
egorizing every system user into k groups. Based on the little in-
formation known, new users were classified based on their simi-
larity to pre-established groups, allowing the visualization system
to leverage information about the group’s preferences and provide

better interventions from the start. However, clustering algorithms
also have caveats. For instance, this approach is sensitive to the
choice of how many clusters there will be and, at the same time, the
system may not have enough information to understand the simi-
larities that explain the clustering if it lacks labels.

User-adaptive visualizations have also leveraged natural lan-
guage processing (NLP) to extract insights. For example, Guesmi
et al. [GSC∗23] inferred user interest models from research pub-
lications, employing different techniques for keyphrase extraction
and shedding light on users’ research interests. Ahn et al. [ABH15]
employed NLP methods over explicit user mention of important
text fragments to calculate keyword scores and construct task mod-
els, revealing immediate user goals. Gou et al [GMHZ13] analyze
tweets, inferring users’ Big Five personality traits and offering in-
sights into personality-driven interactions with visualizations.

While certain machine learning techniques like regression anal-
ysis and classification algorithms (e.g., random forests [LCC16a,
CLRT17, PBC18], support vector machines [BOZ∗14]) have been
extensively explored for modeling user characteristics in user-
adaptive visualizations, there exists a subset of methodologies
that, albeit less researched within this domain, offer intriguing
avenues for user modeling. Notably, some studies have ventured
into employing machine learning algorithms such as neural net-
works [SC20, SLMK18, SLH∗21], probabilistic generative mod-
els [GGLBY16, ZFF22], Markov chains [WBFE17], and recom-
mendation algorithms [JTV18] to capture and represent user char-
acteristics. Although less prevalent, these approaches introduce di-
verse and promising perspectives on user modeling in the context
of user-adaptive visualizations. They warrant attention and further
investigation as they may hold untapped potential for enhancing the
adaptability and personalization of visualization systems.

Summary and Open Areas

In general, the decision of which user modeling technique to
adopt should be based on assessing which method provides the
most reliable representation of the user characteristics that need
to be captured while minimizing the user effort in providing the
necessary input.

For instance, for long-term user characteristics that do not change
during the interaction and that are easy for users to self-assess
(e.g. demographics, preferences), it might make sense to lever-
age one-to-one mapping or well-established standardized tests
for more complex characteristics when they are available (e.g.
for personality traits). Although this approach requires some ef-
fort on the user’s end to explicitly provide the necessary input be-
fore starting to work with the target visualization, this must hap-
pen only once with the advantage of deriving representations that
tend to be rather accurate. Still, there might be situations in which
getting the input explicitly from the user upfront is not feasible,
for instance, in the case of a walk-up-and-use system (as dis-
cussed in [CLRT20]) where it might not be realistic to ask users
to spend additional time volunteering information. In this case,
it is worthwhile investigating alternative data-driven approaches
that can infer the relevant user characteristics from implicit input
(e.g. interactions, eye-tracking data, etc.) [GC15, PBC18].

submitted to COMPUTER GRAPHICS Forum (5/2025).



F. Yanez, C. Conati, A. Ottley, & C. Nobre / The State of the Art in User-Adaptive Visualizations 11

Considering data-driven approaches is even more important if the
user traits to be modeled are short-term states that change dur-
ing the interaction with a visualization, such as cognitive load
and analysis goals because deriving these states from the meth-
ods that involve explicit user input (i.e., one-to-one mapping or
questionnaires) requires interrupting the user during the interac-
tion, which can be intrusive and unreliable. On the other hand,
building accurate data-driven models for short-term states is also
challenging because they need suitable training data. Hence, one
important open area of research in this context is to investigate
further the relative suitability of data-driven versus explicit-input
approaches for different short-term states and a variety of visual-
ization contexts.

It would be interesting to explore cognitive modeling techniques
for user modeling, especially those that rely on having a com-
putational model of the knowledge and skills that are needed to
process a given visualization effectively. Such techniques allow
inferring from observable user behaviors which knowledge and
skills the user has mastered or is missing, and they have been
successfully used to drive adaptive interventions in applications
such as Intelligent Tutoring Systems (e.g., [Woo09]). One main
advantage of these cognitive modeling approaches is that they are
highly interpretable, unlike most data-driven approaches, mean-
ing it is easier to show the user the rationale underlying the sys-
tem’s predictions (e.g. [BKA∗18]). This is important to address
the lack of comprehensibility, one of the possible drawbacks of
user-adaptive interaction [Jam07].

7. User Representation

A user representation describes the set of user characteristics the
system has of a particular user [DG94]. This information is de-
scribed in the form of user characteristics, usually called individual
differences [VHW87]. In this paper, we categorize them into long-
term characteristics (e.g., personality traits, cognitive abilities, ex-
perience/bias, demographics), and short-term ones (e.g., cognitive
states, analysis goals). The former represents information about the
user that is stable, at least for the duration of the session interacting
with the visualization system, whereas the latter describes charac-
teristics that are likely to change within any one session. It is im-
portant to note that these categories are not mutually exclusive and
can exhibit correlations. For example, low working memory capac-
ity—a cognitive ability—can be correlated with higher levels of
cognitive load—a cognitive state—, influencing how a user inter-
acts with the visualization system.

7.1. Long-Term Characteristics

When considering long-term characteristics (i.e., those not ex-
pected to change during the analysis session) user-adaptive visu-
alizations only need to capture and integrate them once.

7.1.1. Personality Traits

Personality traits are the user characteristics regarding thinking and
behaving [All37]. The two most common personality traits stud-
ied in the context of user-adaptive visualizations are locus of con-
trol [COSM20, GF10, ZCY∗11] and need for cognition [LCT19,

CM08]. Additionally, two personality traits from the Five-Factor
Model [MJ92] (i.e., extraversion, neuroticism, openness, conscien-
tiousness, and agreeableness) have been shown to have an effect on
visual analysis (e.g., [GF10,ZOC∗13,BOZ∗14]). Lastly, conscien-
tiousness was studied by Alves et al. [ADHC∗23] and its role in
visualization-supported decision-making.

Locus of control measures the degree to which the user
perceives outcomes due to their own behavior or external
forces [Rot66]. While this characteristic is usually measured on
a continuous scale, visualization researchers often discretize it
into categories to better understand trends. The most common
way to classify the spectrum is in either external (i.e., low) or
internal (i.e., high) locus of control, with the rare addition of a
intermediate (i.e., medium) class (e.g., [COSM20]).

Locus of control has been studied within the context of
visualization research by analyzing its effects on users’ in-
teractions with visualizations. Differences in locus of control
can have an effect on performance in both data exploration
tasks [GF10, ZOC∗13, OYC15], and visualization styles [GF10,
ZCY∗11, ZOC∗13].

For data exploration tasks, Ottley et al. [OYC15] found a
strong correlation between locus of control and analysis strate-
gies with hierarchical visualizations. In their study, individuals
with an external locus of control outperformed those with an in-
ternal locus of control when exploring dendrograms. Addition-
ally, the authors found that when the visualization offered guided
or restricted exploration, users with an external locus of control
were more efficient. Locus of control can also play a role in dif-
ferent levels of visual complexity. Sheidin et al. [SLC∗20] found
that users with a high locus of control perform better with com-
plex and less familiar visualizations, whereas users with a low
locus of control do not. The authors provide clear guidelines
for adaptive systems on which interventions to provide based on
users’ locus of control. They also caution against interventions
that switch between visualizations during analysis to avoid cog-
nitive overload. Studies like these provide valuable information
for future research in user-adaptive visualizations.

Locus of control has also been investigated in relation to other
aspects of visual systems design (e.g., visual encoding, spa-
tial arrangement, and interaction). In work investigating the im-
pact of the layout of hierarchical visualizations, Ziemkiewicz et
al. [ZCY∗11] found that participants with an external locus of
control performed equally well with both implicit and explicit
layouts. Conversely, participants with an internal locus of con-
trol performed significantly better with implicit and familiar lay-
outs. The authors hypothesize that visualizations with a highly
explicit and unfamiliar visual structure may be more overwhelm-
ing for an external locus of control user. Someone with an exter-
nal locus of control may be more willing by nature to adapt her
thinking to the external representation. These findings agree with
Sheidin et al. [SLC∗20] and suggest that adaptive systems can
leverage more complex and unfamiliar visualizations for users
with high (internal) locus of control.

Need for cognition describes the inclination a user has towards
cognitively demanding tasks [LTC21]. Even though this is mea-
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sured continuously, people’s need for cognition is usually as-
sessed as low (i.e., prefer tasks with less mental effort) or high
(i.e., prefer to solve problems that require effortful thinking and
enable them to learn new information).

Research in visualization has examined whether user charac-
teristics, such as need for cognition, can help the adaptation as-
signment process select the most effective visualization for the
individual [CM08]. Over two alternative visualizations (radar
graph and multiscale dimension visualizer), the authors showed
that users’ cognition needs were a good predictor of each visu-
alization’s effectiveness. If the system detects the user has a low
need for cognition, the authors suggest implementing an inter-
vention, such as providing help or clarifications.

This user characteristic has been found to be correlated to
other characteristics relevant to visualization research. For ex-
ample, Lee et al. [LKY∗19] measured the correlation between
different user characteristics related to visualization (i.e., visual
literacy, numeracy, need for cognition, and visualizer-verbalizer
cognitive ability). The participants’ visual task involved answer-
ing questions based on different information visualization tech-
niques (i.e., bar chart and stacked area chart). The authors found
that there is a positive correlation between the user’s need for
cognition and their visual literacy.

The Five Factor Model has been analyzed in many visualiza-
tion research studies by measuring their correlation with differ-
ent aspects of visualization tasks. However, only two of these
factors have been found to be relevant in such analyses: Neuroti-
cism and Extraversion. Neuroticism captures how prone the user
is to experience negative emotions. Extraversion is the degree to
which the user is assertive, sociable, and outgoing. Both have
been found to be good predictors of task efficiency [GF10] and
task accuracy [ZOC∗13]. For instance, Green & Fisher [GF10]
found that those who are highly neurotic or extraverted tend to
be more adept at manipulating interfaces and identifying targets.
Additionally, research has shown that it is possible to predict
these two factors based on users’ interactions with the visualiza-
tions, with up to 95% accuracy [BOZ∗14].

7.1.2. Cognitive Abilities

Cognitive abilities are the characteristics of the user’s cognitive
process that influence how the user understands and processes in-
formation. As long-term traits, these remain constant during the
interaction with a visualization system.

Perceptual speed describes how quickly a person can accu-
rately compare similarities and differences of objects [Ott20].

In evaluating the effectiveness of visualization based on user
characteristics, Conati et al. [CM08] asked users to complete
multiple visualization tasks using two different types of visu-
alizations. In a comparative numerical task, the authors found a
significant correlation between the users’ perceptual speed and
their performance. There has also been some work aimed at de-
tecting perceptual speed using eye tracking and interactions of
the user [CLRT20]. The authors found that perceptual speed

could be predicted most accurately with both types of data si-
multaneously, which they attribute to the number of visual com-
parisons the user makes. Adaptive visualizations that capture eye
gaze can leverage these findings to infer perceptual speed and
make appropriate interventions.

Visual working memory describes the ability to remember an
object’s orientation, configuration, and location [Ott20].

A number of researchers have attempted to predict cogni-
tive abilities—including visual working memory—from eye-
gaze patterns to inform future research on adaptive visualization
designs. For instance, Steichen et al. [SCC13] were able to pre-
dict visual working memory with 58.92% accuracy. According
to Steichen et al. [SCC13], visual working memory is inversely
proportional to the time to first fixation, meaning users with high
visual working memory scan different visual areas quickly. A
different study, also aimed at detecting cognitive abilities based
on eye-tracking data and user interactions [CLRT20], suggests
that eye-gaze data alone is more accurate than interaction data
or a combination of both in predicting visual working memory.

This characteristic has also been studied in accordance with
the user’s ability to process a given visualization. Conati et
al. [CCTL15] performed a study where the users had to do di-
verse visual tasks with bar charts or radar graphs. The authors
found that people with low visual working memory struggled
with understanding the use of certain characteristics of the visu-
alization system, such as radio buttons and drop-down menus.

Verbal working memory refers to the ability to remember
speech-related information [Ott20], and it is measured by the
quantity of verbal information that can be temporarily stored and
used in working memory [MZJS18].

In a study on the influence of cognitive abilities and person-
ality traits on visual perception, Sheiden et al. [SLC∗20] found
that users’ perception of different visualizations has interaction
effects with visual working memory. On domain tasks, users
with high verbal working memory were faster than those with
low verbal working memory when interacting with stream vi-
sualizations. When it came to synoptic tasks, the authors found
no effect on verbal working memory and visualization, as every
user was faster with the line visualization.

Several different factors, including user characteristics, high-
lighting interventions, and task complexity, have been exam-
ined to determine how gaze behavior is affected while analyzing
bar graph visualizations [TC14]. The researchers concluded that
users with low verbal working memory took longer than those
with high working memory to process some of the textual ele-
ments of the graph. They argued that interventions that enhance
their ability to process textual information (e.g., questions and
legends) related to visual tasks might benefit them.

Spatial ability is the ability to mentally represent and ma-
nipulate representations of objects in two or three dimen-
sions [Ott20].

Research in visualization has found a correlation between spa-
tial ability and visual comprehension and a preference for verbal
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descriptions [OPH∗16,MOC21,BWH∗23]. Velez et al. [VST05]
found a positive correlation between visualization comprehen-
sion and spatial abilities. Moreover, they found that the general
population exhibits a wide range of spatial abilities, suggesting
that visualization designers should consider spatial ability to ac-
commodate audience diversity. Researchers found in a different
study that people with higher spatial ability rated all verbal de-
scriptions lower than people with lower spatial ability, suggest-
ing a dichotomy between spatial and verbal thinking [ZK09].

Other cognitive abilities hold potential relevance in this
field. These include spatial memory [VST05, CLRT17, TCC18,
LC19], visual disembedding [VST05, CM08, TCC18, SLC∗20],
visual scanning [CLRT17, LC19, CLRT20], reading profi-
ciency [TCC18, LTC21], verbal IQ [TCC18, LTC21], cognitive
style [RKB∗17, SFN20], color difference perception [Sza18],
numeracy ability [MDF12], computational literacy [RMB11],
and musical sophistication [JTV18]. While these cognitive at-
tributes have the potential to influence how users engage with
visualizations and comprehend complex data, their exploration
and incorporation into user-adaptive systems have been compar-
atively limited in research thus far.

7.1.3. Experience/Bias

Experience describes prior knowledge of a specific task, domain, or
visualization. Bias, on the other hand, is the user’s preconception
based on their experience. They encompass knowledge that may
affect the user’s behavior when faced with familiar problems.

Expertise is the user’s level of proficiency with the visualiza-
tion or task. It refers to the user’s knowledge of specific con-
cepts, their ability to apply the knowledge in practice, or their
ability to extrapolate knowledge to new related tasks.

A user’s visual expertise affects how they interact with the
visualization. Toker et al. [TCSC13] used bar and radar graphs
to study user characteristics and gaze behavior. Users with bar
expertise tended to access labels more, while users with radar
expertise tended to access legends more. According to the au-
thors, these findings are important for developing user-adaptive
visualizations because they provide interventions similar to what
experts would provide.

There is also a relationship between domain expertise and spa-
tial ability. This type of expertise has also been studied in visu-
alization research. Downing et al. [DMB05] observed a relation-
ship between domain expertise and spatial ability when study-
ing their influence on searching tasks. Even though the analysis
didn’t show a significant effect between them—which the au-
thors grant to the disproportion of domain experts among their
participants—, the results showed that users with high exper-
tise and spatial ability performed best, while those who scored
poorly performed worst.

Visual literacy is the ability to read and interpret visual infor-
mation effectively, efficiently, and confidently [BRBF14].

Studies show a correlation between visual literacy and peo-
ple’s ability to learn unfamiliar visualization [LKK17,PO23] and

their self-reported rating for the ease of understanding a given
set of visualizations. Visual literacy was also shown to be an in-
fluential factor in user-adaptive interventions for magazine-style
narrative visualizations. An analysis of eye-tracking-based inter-
ventions (i.e., highlights) for comprehension tasks revealed that
low visual literacy users most benefited from them [LTC21]. The
authors suggest user-adaptive interventions can mitigate poten-
tial disadvantages as low visual literacy users achieved higher
accuracy on the task when they received interventions—while
maintaining the same overall time—compared to high visual lit-
eracy users. Building on these results, Barral et al. [BLIC21]
studied gaze behaviors generated by adaptive interventions in
the context of users’ visual literacy levels. As a result of these
highlighting interventions, the authors found that users with low
visual literacy could better comprehend the visualization by con-
centrating on relevant regions.

Cognitive bias is defined as the errors in judgment or the irra-
tional behavior that may come from automatic heuristic strate-
gies in the decision-making process [Ell18]. It is well known that
visualization plays an increasingly important role in decision-
making. Therefore, the study of cognitive bias in user-adaptive
visualizations is especially important since it may assist in miti-
gating adverse outcomes.

In a study to identify cognitive biases from the user’s se-
quential decision-making during the analysis task, Wall et
al. [WBFE17] observed and measured users’ bias manifesta-
tions. The authors argue that bias detection can be used to mit-
igate negative effects during visualization tasks, a valuable re-
source for future user-adaptive visualization studies.

Other factors within the Experience/Bias category that have
garnered relatively less research focus thus far. These include
characteristics such as learning learning curve [Sin07, TSG∗14,
LTCC15], style [CM08], and political view [GGLBY16]. These
lesser-studied aspects pertain to individual predispositions, atti-
tudes, and learning patterns that can shape the user’s interaction
with visualizations. While these factors may not have been ex-
tensively explored in the context of user-adaptive visualizations,
they offer intriguing avenues for further investigation into user
behavior and preferences in this domain.

7.1.4. Demographics

Demographics are users’ characteristics not related to their cog-
nitive process, personality, or experience (e.g., age, gender, edu-
cational level, cultural background).

A gender-related pattern of visual preferences has been ob-
served in visualization research. A study examined how users in-
ternalized visual metaphors (similar to verbal metaphors) based
on their preconceived information structures and user character-
istics, such as demographics [ZK09]. Despite the lack of a strong
correlation between self-reported visual preference and perfor-
mance, such a relationship still showed a strong gender effect.

Studies on adapting digital documents and images for color-
deficient people will benefit user-adaptive visualizations. Ac-
cording to previous work, documents can be tailored to color-
blind viewers using optimization methods [JH06]. In contrast,
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another study demonstrates that their algorithm allows users to
interact with one variable—defined as color correction—to com-
pute various color adaptations [JH07].

7.1.5. Visual Preferences

Visual preferences are the user’s likes and dislikes related to vi-
sualization styles, layouts, or interactions.

Visual preferences are related to personality traits in the con-
text of information visualization. It was previously shown that
personality traits (e.g., the Five Factor Model and locus of con-
trol) correlate with preferences for idioms (i.e., different types of
charts) within a variety of visualization contexts (i.e., hierarchy,
evolution over time, and comparison) [ARG∗20]. According to
the authors, neuroticism, openness, and agreeableness have a
correlation with user preferences for different idioms, such as
horizontal bar charts. These results shine a light on the possi-
bility of inferring user preferences by understanding other user
characteristics and thus informing the intervention in a user-
adaptive visualization system.

7.2. Short-Term Characteristics

7.2.1. Cognitive States

As opposed to cognitive abilities, cognitive states are the character-
istics of the user’s cognitive process that are more temporary. They
can be influenced by external factors and change over time. In par-
ticular, they may change during the interaction with a visualization
system. Even though cognitive states are volatile and hard to mea-
sure, they provide additional information about user performance
that cannot be gathered from cognitive abilities [Ott20].

Cognitive Load is the amount of cognitive resources needed to
perform a given task, and it’s sometimes referred to as memory
demand [HEH09].

The effectiveness of visualization has been measured by cog-
nitive load. For example, Peck et al. [PYO∗13] conducted a
study using Functional Near-Infrared Spectroscopy (fNIRS) to
compare the level of difficulty in interpreting bar charts and pie
charts. They found that the performance depended on the indi-
vidual. The study revealed that around half of the participants
showed brain activity indicating that interpreting bar charts was
more mentally demanding, whereas the other half showed the
opposite results. Similarly, Anderson et al. [APM∗11] analyze
Electroencephalogram (EEG) data as users interacted with mul-
tiple visualization types. By objectively measuring the difficulty
of different visualizations, they could determine which visual-
ization was the most difficult. Figure 9 shows their experimental
workflow that transforms EEG data into a single cognitive load
time series for each sensor, which is then spatially combined
to derive the overall cognitive load for the trial. User-adaptive
visualizations could use this framework to choose various inter-
ventions depending on user cognitive load in real-time.

Contextual information input is also relevant for responsive
visualizations, which can adapt based on the device screen
size [DGDLM15]. Figure 5 shows ViSizer, a framework for re-
sizing visualizations while maintaining the significance of the
regions by adapting the design to the screen size [WLLM13].

Figure 9: Example of the workflow to transform EEG signals into
an estimation of the cognitive load for a user during a visual ana-
lytic experiment [APM∗11].

Confusion refers to the user’s lack of understanding. This char-
acteristic has been found to hinder the user experience with in-
formation visualization, especially when the visualizations in-
crease in complexity [LKH∗16].

Several studies have invested their efforts in predicting con-
fusion from eye-tracking data to inform future research in user-
adaptive visualizations. Conati et al. [CHTS13] ran a user study
to collect eye-tracking data from users interacting with Val-
ueCharts, and self-reporting when they were confused during
the analysis task. This data was then leveraged by Lallé et
al. [LCC16a], who built a classifier to predict confusion in real-
time from the user’s eye-gaze data. Sims & Conati [SC20] were
able to improve upon the previous work and more accurately
predict users’ confusion from their eye-tracking data when in-
teracting with ValueCharts.

Other short-term characteristics within user-adaptive visualiza-
tion research, cognitive load, and confusion have rightfully occu-
pied a central place. However, it is important to acknowledge the
presence of other cognitive states that have received relatively
less attention in research but hold significance in understand-
ing user behavior during visualization interactions. These under-
explored cognitive states encompass frustration [PBC18], confi-
dence [SLMK18], and attention [Sin07, WLMB∗14, AAGP23].
Investigating these additional cognitive states could offer a more
comprehensive understanding of user experiences and interac-
tion dynamics in user-adaptive visualizations.

7.2.2. Analysis Goals

Analysis goals are tasks or specific objectives the user aims to
accomplish using visualization (e.g., exploring data, finding pat-
terns) [BM13]. Knowing these will facilitate the selection of the
interventions for the user’s needs.
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Figure 10: Example of explicit analysis goals in VizAssist. The user
selects their intent with the data, the tasks they aim to perform, and
any wanted properties for the visualizations [BGV16].

Research has been conducted to gain insights into the user’s
analysis goals either implicitly or explicitly. For example, Lallé et
al. [LTC21] determined the analysis goal from the user’s fixation
on specific sentences in a text. According to a post-hoc survey of
their participants, this technique provided personalized interven-
tions based on their gaze fixations about 90% of the time. Addi-
tionally, Bouali et al. [BGV16] focused on guiding users to find
visualizations relevant to their visualization task, based on explicit
objectives. Figure 10 shows the questionnaire asking for their intent
with the dataset, plus two characteristics of their analysis goals: the
type of data mining they will perform, and the visualization prop-
erties they might require. With this information, the system selects
the right intervention from a subset of possible visualizations.

Summary and Open Areas

There is a substantial body of work in the visualization of the
various user representations we can capture and model in a user-
adaptive system. In this paper, we have categorized the charac-
teristics into long-term and short-term, motivated by considering
the complexity of algorithms needed for practical adaptations. In
particular, it may be feasible to use rule-based approaches when
adapting to long-term traits, as they will remain unchanged dur-
ing an analysis session. In contrast, short-term traits will likely
evolve, necessitating continuous monitoring and more complex
algorithmic solutions.

Still, future work is needed to translate low-level observations of
user behavior into user representations, as most of the existing
literature uses "pre-existing" sources such as psychological sur-
veys. Accessing the user’s personality profile, background, and
preference data in some expert scenarios is feasible. However,
this information is likely unavailable in most usage scenarios.
One possible solution is to develop real-time modeling algo-

rithms that infer user characteristics from interaction observa-
tions. For example, Brown et al. [BOZ∗14] showed how we
might detect user attributes by analyzing their click stream data.
Additionally, we have seen increased interest in developing algo-
rithms to model user behavior (e.g., biases [WBFE17,MGO20],
attention [OGW19], etc.) and investigating how we can use these
techniques to improve visualization tools [BCS16]. We hope that
this STAR bridges these two traditionally separate lines of re-
search.

Analysis goals are inextricably linked to tasks. However, there
exists multiple taxonomies, typologies, and frameworks to
help visualization researchers reason about tasks [RAW∗16,
GMOB22], ranging from categorizing the low-level interactions
that users perform with an interface (e.g., [YaKSJ07, BM13]), to
classifying the higher level intents that often drive these interac-
tions (e.g., [LTM17, BH19]).

Although recent attempts have been made to define tasks pro-
grammatically [BO24] and understand the relationship between
the different proposed task models [GMOB22, GZ09], future
work is needed to enable real-time task identification and track-
ing their evolution.

8. Adaptation Assignment

The adaptation assignment component defines when and how to
personalize an intervention based on the user representation. This
process must balance the benefits of adapting the visualization with
the cognitive overload that can result from dynamic changes to
the visual interface [CHTS13]. This section describes the main ap-
proaches used to make adaptation assignments in visualization re-
search.

Expert knowledge defines the criteria that drive the adaptation de-
cisions.

Expert rules are best suited for adaptation assignment processes
based on the results of prior studies investigating the relationship
between user characteristics and visualization choices. For exam-
ple, Lallé et al. [LTC21] leverage prior work on the importance of
cuing to help users process multimodal documents that combine
text and graphics (e.g., see [CAS∗18, MZJS18, RM15]) to devise a
system that highlights specific parts of graphs in a magazine-style
narrative visualization based on which part of the accompanying
text the user is reading.

An implementation of expert knowledge to generate an effec-
tive visualization technique design is shown in VISTA [SI92] and
can be leveraged in the user-adaptive context. When representing a
wide range of magnitudes in a vector field, they used prior knowl-
edge to inform that the arrows should indicate only the direction of
a vector while letting characteristics like color and thickness indi-
cate their magnitudes. Senay & Ignatius [SI92,SI94] leverage such
knowledge to build composition rules, which are a set of conditions
to combine different pairs of visualization techniques to display
several data variables at once, as shown in Figure 11.

Data-driven algorithms leverage data to build mathematical
models that will inform the adaptation assignment process.
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For instance, classification algorithms can predict interven-
tions as categorical output by leveraging the user representation
along with the data and its properties. For example, Metoyer et
al. [MZJS18] trained support vector machine classifiers based on
the user’s analysis goal to extract the four key narrative elements
(i.e., who, what, when, and where) from news text. Then, the sys-
tem transformed such information into graphics to show to the user
as in Figure 7.

Boulai et al [BGV16] experimented with genetic algorithms to
drive the adaptation decisions in user-adaptive visualizations. Ge-
netic algorithms have been used to generate suitable visualizations
in non-user-adaptive contexts [VSMAdB97, BP05, CBL12]. In this
case, a genetic algorithm starts from a vector encoding of rele-
vant visualization properties and generates a set (population) of
possible solutions. A population is evaluated first based on prede-
fined fitness criteria (e.g. suitability for data representation, ease
of use), and the top-performing individuals are combined while in-
troducing small random changes. This process continues until the
visualization is satisfactory or a stopping criterion is met. VizAs-
sist [BGV16] employs a variant of this approach called an interac-
tive genetic algorithm where the fitness criteria include the user’s
preference over visualization properties, which allows the algo-
rithm to evaluate visualizations to produce a new population. Then,
the top-ranked ones are shown in Figure 12. This algorithm en-
hanced users’ task performance, compared with a trial-and-error al-
ternative where users manually adjust the interface’s settings. How-
ever, the authors found that it doesn’t improve their efficiency, as
users spent a similar amount of time with both interfaces.

Figure 11: Example of expert knowledge as composition rules to
render new visualizations. In each row, the first two graphs on the
left are the components for the composition, whereas the ones on
the right result from applying the rules [SI94].

Summary and Open Areas

Adaptation assignment approaches can broadly be categorized as
either knowledge-based expert rules or data-driven algorithms.
Knowledge-based rules have the advantage of being more inter-
pretable and transparent. This type of approach is best suited for
systems that build on the results of prior studies on the relation-
ship between user characteristics and visualization choices.

On the other hand, data-driven algorithms are more scalable and
can provide adaptations to more nuanced changes in the user rep-
resentation. For example, a data-driven algorithm can respond to
small changes in cognitive load, using mathematical models to
calibrate the appropriate interventions.

The adaptation assignment component of user-adaptive visual-
izations is arguably the least researched area of the five compo-
nents. As a result, there are plenty of possibilities for future work
in this area. A particularly relevant direction for future work is
using reinforcement learning algorithms for the adaptation as-
signment process. These algorithms must balance two distinct
trade-offs: (1) deciding whether to adapt at any given moment
and (2) exploiting specific interventions versus exploring new
possibilities. Reinforcement learning has already been used in
the field of adaptive user interfaces, such as for intervention plan-
ning [TBLO21], and to improve users’ initial interaction with
the system [ZWAD21]. User-adaptive visualizations can leverage
these findings by utilizing user representations to train reinforce-
ment learning models.

Another area where future work would be beneficial is combin-
ing expert rules and data-driven algorithms for adaptation assign-
ment. Empirical data collected during studies can provide a valu-
able dataset of user representations, their interaction histories,
and their performance and preference for specific visualizations.
Data-driven algorithms can then be employed to extract rules and
heuristics from this rich dataset. This approach leverages the im-
plicit knowledge contained in prior studies and captures them in
the form of rules and heuristics that can be modified as needed
by experts.

Figure 12: Example of a data-driven approach to determining
the intervention by implementing an interactive genetic algorithm
based on user preference [BGV16].
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9. Interventions

The intervention component is the output of the adaptation assign-
ment process and defines the strategies used to deliver personal-
ized support in user-adaptive visualizations. Interventions can be
categorized along two dimensions: (1) the degree of interven-
tion [CGM∗17], and (2) the type of intervention. The former de-
termines the level of support provided to the user ensuring that the
assistance is appropriately tailored to their needs without causing
cognitive overload. The latter describes the method of delivering
this support. This section describes the main approaches used to
provide interventions in user-adaptive visualization research.

9.1. Intervention Degree

Intervention degree is the level of support provided to the user
which could range from a suggestion within the visualization to
making direct modifications to it, such as dynamically highlight-
ing bars in a bar chart based on eye-gaze data over correspond-
ing text [LTC21]. We follow the distinction made by Ceneda et
al. [CGM∗17], where the said degrees can be orienting, direct-
ing, or prescribing. Figure 13 shows the decision tree suggested
by Ceneda et al. [CGM∗18] illustrating the key difference between
selecting among these degrees.

9.1.1. Orienting

Orienting entails interventions in the form of hints related to the
current visualization. These are visual cues that suggest to the
user an action to take next or a possible visualization change
that might be helpful based on the user representation.

For instance, in a study dedicated to detect and respond to
user frustration by leveraging gaze data and skin conductance
sensors [PBC18] the system is able to orient the user towards
relevant actions through contextual recommendations to allevi-
ate frustration and maintain task focus.

In another study, the Domino visualization technique was pre-
sented as a method of presenting relevant data subsets and their
relationships to the user’s analysis goals [GGL∗14]. A user re-
ceives hints as to what data is relevant to their current analysis
state in this visualization system. The system allows them to ar-
range visualizations as they wish and to easily generate visual-
ization techniques relevant to their analysis.

9.1.2. Directing

With directing, the systems put explicit emphasis on possible in-
terventions as the next course of action. The system presents one
or more curated alternative options based on the user represen-
tation, from which the user decides whether to pursue them.

To improve the efficiency of visual analysis tasks, Silva et
al. [SSV∗18] developed a user-adaptive visualization system that
used visual recommendations as directed interventions. In this
work, the user representation revealed the user’s interest in mul-
tiple time series, so the system suggests different visualizations
to assist them in achieving their analysis goals.

In Voyager, a well-known visualization system, Wongsupha-
sawat et al. [WMA∗16] designed the system to display multiple

relevant visualizations based on user interactions. Data-driven
models (i.e., clustering and ranking algorithms) were used to
make recommendations. As illustrated in Figure 14, Voyager in-
cludes two panels: (a) shows the exact match gallery, and (b)
shows suggested visualizations. The user can choose to accept
or reject suggestions, steering their analysis path accordingly.

9.1.3. Prescribing

Prescribing involves making decisions and performing manda-
tory interventions to the visualization. This type of interven-
tion happens automatically and does not provide the user with
a choice or selection. This intervention is common in user-
adaptive visualization research to determine which intervention
works best given the user representation.

For instance, based on the user’s analysis goal inferred from
fixation points, Barral et al. [BLIC21] implemented highlighting
interventions as prescribed guidance (Figure 15) in a study about
the relationships between visualization personalization, user rep-
resentation, and eye gaze behavior. Most participants found this
approach useful and easy to use, but half flagged it as distracting.

A different study also leveraged users’ fixations to prescribe
interventions to the visualization’s legend by adapting its con-
tent and/or placement [GKG∗18]. They demonstrated that their
adaptive approach decreased users’ time spent on the legend.

9.2. Type of Intervention

Aside from the degree, interventions can also be categorized
based on how and when the interventions are applied. These
types are pre-visualization, within an existing visualization, or
between different visualizations.

9.2.1. Pre-Visualization

Interventions can happen even before modifying the current vi-
sualization the user is interacting with. Also known as dynamic
back-end adaptations, these interventions take place in the back-
ground to provide support to the user without altering the current
display [Ott20]. The design space for this type of interventions
includes the optimization of data retrieval processes, the antic-
ipation of user needs based on historical interactions, and the
seamless integration of back-end processes to enhance the over-
all responsiveness of the system.

Pre-visualization interventions are typically used in user-
adaptive visualizations to reduce response times, which im-
proves the user experience. Battle et al. [BCS16] used a mid-
dleware layer between the backend and the visualization system
to preemptively fetch data as the user explored the dataset. A
430% reduction in latency was found by dividing the visualiza-
tion into tiles and pre-fetching data for the regions of interest,
which were both similar to the context the user was interacting
with and their past interactions, as shown in Figure 16.

9.2.2. Within an existing visualization

When an intervention is performed within an existing visual-
ization, the current visualization being displayed to the user is
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Figure 13: A decision tree illustrates the key differences between the different degrees of guidance, showcasing that orienting entails pre-
senting multiple suggestions, directing involves presenting prioritized suggestions while prescribing comprises presenting only one sugges-
tion [CGM∗18].

modified. Several interventions of this type are common in the
visualization literature, such as visual prompts (e.g., highlights
and labels) [Mit97] and layout changes.

The relevance of a particular subset of data can be com-
municated effectively by highlighting interventions. Carenini et
al. [CCH∗14a] studied some types of highlighting (i.e., bold-
ing, de-emphasizing, reference lines, and connected arrows), as
shown in Figure 17. According to the authors, the effectiveness
of such visual prompts on task performance depends on user
characteristics and the complexity of the task.

Other works have also studied user characteristics and inter-
ventions. For example, the layout of file visualization systems
was gradually shifted from an indented view to a containment
view in a study aimed at evaluating the compatibility between
users’ locus of control and visualization style [ZCY∗11]. Based
on their findings, users with an internal locus of control per-
formed worse with containment visualizations, whereas those
with an external locus of control performed better.

Figure 14: Example of directing guidance to the user by showing
other visualizations of relevant data to the current state/query. By
selecting a variable, the main gallery is updated showcasing: (A)
the exact-match section containing multiple transformations and
(B) the suggested section with the visualizations the system is rec-
ommending to the user [WMA∗16].

9.2.3. Between different visualizations

Interventions can happen between different visualizations. This
involves switching between different visual representations
based on the understanding of the user. For instance, the visu-
alization chart type can be changed to better suit the user’s pref-
erences or analysis goals.

An example of user-adaptive visualization systems that per-
form this type of intervention was developed by Gotz et
al. [GWL∗10]. The authors built a user representation by infer-
ring their analysis goals, which helped the system recommend
alternate visualizations. A more appropriate alternative is recom-
mended to the user based on patterns in the temporal data derived
from their interactions, as shown in Figure 18. Other examples
include the system implemented by Silva et al. [SSV∗18], and
Voyager by [WMA∗16] (Figure 14) as mentioned earlier.

Summary and Open Areas

Choosing which type of intervention to use, within or between vi-
sualizations, can be guided by several factors. The first tradeoff to
consider is the cognitive cost of changing between visualizations
over the possible advantages of a data and task-appropriate visu-
alization. Another factor to consider is the user representation the
visualization is adapting to. The transient nature of short-term

Figure 15: A system prescribing the intervention by highlighting
the relevant bars according to the fixation points of the user while
reading the text [BLIC21].
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Figure 16: Example of pre-visualization intervention by pre-
fetching data of the region of interests based on the user’s past
interactions [BCS16].

characteristics such as cognitive load or of some types of analysis
goals are often best handled by within-visualization adaptations,
which can incur a much lower cognitive cost to the user.

The design space of interventions in existing user-adaptive vi-
sualizations is largely restricted to either modifying or switching
between existing visualizations. A vastly unexplored area for fu-
ture research lies in automatically generating visualizations that
are custom-made for each individual. This type of work has been
done for interface generation, where the system generates “op-
timal” user interfaces given a declarative description of an in-
terface, device characteristics, available widgets, and a user- and
device-specific cost function [GWW10]. Specific to visualiza-
tions, Hullman et al. [HDA13] developed a system that automat-
ically produces custom, annotated visualizations of stock behav-
ior given a news article about a company. Their annotation al-
gorithms are informed by a study of professionally created visu-
alizations and take into account visual salience, contextual rele-
vance, and detection of key events in the company’s history.

Formalizing visualization design knowledge is critical for the
automatic generation of visualizations. This formalization was
done by Moritz et al. [MWN∗19], who propose modeling vi-
sualization design knowledge as a collection of constraints in
conjunction with a method to learn weights for soft constraints
from experimental data. This and other work in this space (e.g.,
[DSK∗14, KRD∗22]) provide the foundation for the automatic
generation of personalized visualizations, which would cater to
an even broader spectrum of users since the design space of visu-
alizations would be limited only by a specification of the visual
encodings.

Figure 17: Example of the within visualization intervention of
visual prompt. Some potential highlights for bar charts are
bolding, de-emphasizing, reference lines, and connected ar-
rows [CCH∗14a].

Figure 18: Example of a between visualizations directing interven-
tions. The left side (a1) represents the previous iterations of the
user’s interaction with the system, along with the current context.
The right side (a2) shows the system’s recommendations of a more
appropriate alternative for the current task [GW09].

10. Evaluation

In this section, we discuss the evaluation approaches applied to as-
sess user-adaptive visualizations. Although empirical user studies
are the most prevalent evaluation method in this field (i.e. lab-based
or crowdsourced), researchers also employ several other methods
to gain comprehensive insights into the impact and effectiveness of
their visualization systems. Additionally, most works rely on quan-
titative metrics, especially user performance, to gain a better un-
derstanding of how well their visualizations meet the needs of the
users.

10.1. Evaluation Metrics

Researchers employ a wide array of methods to assess user in-
teractions and system performance. These include both qualitative
and quantitative metrics, offering a multifaceted view of the user’s
experience and the system’s functionality. In user-adaptive visual-
izations, success metrics evaluate user performance along with the
effectiveness of the interventions provided. In the subsequent sec-
tion, we delve into the various evaluation metrics used to gauge the
quality, efficacy, and user-centric aspects of user-adaptive visual-
izations.

10.1.1. Qualitative

Qualitative evaluation metrics encompass the holistic evaluation of
the user experience, encapsulating the nuanced aspects that quan-
titative metrics alone may overlook. They provide a lens through
which researchers gain insights into the subjective aspects of adap-
tive interventions. These metrics involve system feedback—such
as visualization preference and ease-of-use—intervention feed-
back—which delves into recommendation quality and relevance—,
and self-reflecting user feedback—including assessments of user
confidence.

Some studies perform qualitative evaluation by comparing the
adaptive visualization and a non-adaptive version. For instance,
Wongsuphasawat et al. [WMA∗16] built Voyager, an adaptive sys-
tem that displays multiple relevant visualizations based on the
user’s analysis goals and used post-hoc questionnaires to determine
user preferences compared with PoleStar, a non-adaptive tool mod-
eled on Tableau. 94% of the participants stated that they preferred
Voyager for exploration tasks. Similarly, in a user-adaptive visual-
ization system that suggested time series based on user preferences,
Bouali et al. [BGV16] performed a user study with both their sys-
tem VizAssist, and a manual interface. After performing statistical
tests, the authors found that there was a significant difference in the
users’ preference towards VizAssist.
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System Feedback is a prevalent qualitative approach that in-
volves assessing user feedback on the system’s overall per-
formance, including aspects such as visualization preference
(e.g. [ABH15, AHM16, VBCC18, JTV18]) and ease-of-use
(e.g. [CLWM11,SSV∗18]). This provides insights into the users’
subjective experiences and satisfaction. A subset of system feed-
back is intervention feedback, which specifically evaluates the
quality and relevance of interventions. Researchers often gauge
feedback on the effectiveness of recommendations, assessing
whether the suggested interventions align with users’ needs and
objectives by inquiring about the recommendations’ relevance
(e.g. [HKR∗08, MDF12, BOH13, SPEB18, ZBNS21]) and qual-
ity (e.g. [KCGK16, MZJS18, PLW∗23]).

Self-reflecting User Feedback forms an integral part of the
qualitative evaluation by understanding user confidence and
their perception of the intervention’s utility. It sheds light on
users’ trust in the system’s recommendations and their self-
assessment regarding the usefulness of the provided interven-
tions and how that helped their performance (e.g. [WQM∗17,
SLMK18, DAG22]).

User Experience encompasses a holistic evaluation, examin-
ing the overall journey of users interacting with adaptive visu-
alizations (e.g. [Sza18, HKR∗08, GSC∗23, AAGP23]). This in-
cludes factors such as user satisfaction, engagement, and per-
ceived value.

10.1.2. Quantitative

Quantitative evaluation metrics provide the foundation for rigorous
assessment of user-adaptive visualizations. These metrics offer pre-
cise and measurable insights into user performance, system effec-
tiveness, and the efficiency of adaptive interventions. Researchers
delve into user-centric quantitative metrics—including accuracy,
completion time, decision time, and search performance—, eye-
tracking metrics—such as fixation count, fixation duration, visual
comparison, and scan path—, provenance-based metrics—which
analyze user interactions and events triggered during their in-
teraction with adaptive visualizations—, and cognitive load met-
rics—that offer invaluable insights into the cognitive demands im-
posed on users. Lastly, model-related metrics assess the accuracy
and coherence of user modeling and adaptation assignment algo-
rithms.

For instance, Lallé et al. [LTC21] implemented a comparison
of control and adaptive groups to determine how their interven-
tion of highlighting magazine-style narrative visualizations based
on the analysis goal affected users’ performance. From multiple
linear mixed models, the authors concluded that, despite an ef-
fect between performance and visual literacy, their interventions
didn’t translate into a significant main effect against the control
group, suggesting that such interventions are not useful for all
users. Bouali et al. [BGV16] also leveraged mixed models to mea-
sure the effect of the interventions on user performance. The au-
thors found with VizAssist that the accuracy of the answers when
engaging with the Interactive Genetic Algorithm had a significant
difference compared with the manual interface.

User Performance offers objective measures of how effectively
users navigate and interpret adaptive visualizations, includ-
ing, for example, accuracy (e.g. [BGV16, PCQ∗20, DKZH20,
BWH∗23]), completion time (e.g. [PYO∗13, VH16, GKG∗18,
VST05]), decision time (e.g. [CCH∗14b,DKZH20,ADHC∗23]),
and search performance (e.g. [HKR∗08]).

Eye-tracking metrics delve into users’ visual behavior, encom-
passing, for instance, fixation count and duration (e.g. [RKB∗17,
SFN20, BLIC21, SSV∗18]), visual comparison (e.g. [LC19]),
and scan path analysis (e.g. [SSV∗18]). This provides insights
into what users look at and how they explore visual content.

Provenance-based Metrics allow for a comprehensive under-
standing of users’ interactions and decision-making processes
(e.g. interaction strategy (e.g. [OYC15, KCGK16, WMA∗16,
WWZ∗22]), interaction count (e.g. [KCGK16, CHTS13]), and
the number of events triggered (e.g. [DAG22, ADHC∗23])).

Cognitive Load assessment measures the mental effort ex-
pended by users during interactions. This includes quantifying
the cognitive resources utilized to comprehend adaptive visual-
izations (e.g. [APM∗11, PYO∗13]).

Model-related Metrics focus on assessing the time perfor-
mance (e.g. [WLLM13]) and accuracy (e.g. [HKR∗08, LC19])
of adaptation decision-making models, as well as the accuracy
of user modeling techniques (e.g. [Sin07, BOZ∗14, SLH∗21,
CAGM22, FS22]).

10.2. Evaluation Methods

Evaluating adaptive interventions encompasses not only the choice
of appropriate evaluation metrics but also the methods employed
to gather and analyze data. Researchers employ diverse methods
tailored to address specific research questions and objectives. In
the following section, we delve into the intricacies of these evalu-
ation methods, encompassing empirical user studies, case studies,
use cases, and synthetic-s-user evaluation. The distinction lies in
how these methods are applied to assess the unique success metrics
of user-adaptive visualizations.

Most works in the user-adaptive visualization literature employ
user studies with a limited number of participants. This allows for
a controlled setting where the user not only interacts with the vi-
sualization system but also can respond to questions about their
experience. Some of the most common empirical user studies in
user-adaptive visualizations are post-hoc questionnaires that cap-
ture user insight during the analysis, as well as cognitive states
such as cognitive load and frustration [TCC19, BLIC21, LTC21].
In a user-adaptive visualization study, Silva et al. [SSV∗18] im-
plemented interventions by directing users to other recommended
time series based on their analysis. They applied diverse tests and
questionnaires where they assessed the user’s cognitive load and
frustration, as well as their insights into the usability and function-
ality of the adaptive visualization. Their most significant finding
was that users felt confident during the analysis task when select-
ing a visualization from the system’s recommendations.
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Empirical User Studies involve real-world experiments con-
ducted with human participants to gather data, insights, and ob-
servations about their interactions with the visualizations. They
offer a real-world understanding of how users interact with and
benefit from adaptive visualizations and are often performed in
controlled lab settings (e.g. [ABH15, ARG∗20, SC20, BOH13,
GSC∗23, LQS∗23]) or crowdsourced from diverse user popula-
tions (e.g. [GGLBY16, JTV18, EJLLW∗22, BWH∗23]).

Case Studies are in-depth examinations—usually by domain
experts—of specific instances, scenarios, or examples of user-
adaptive visualization systems to gain a detailed understanding
of their performance, impact, and characteristics in real-world
contexts (e.g. [MZJS18, PCQ∗20, ZFF22]). They offer detailed
insights into the contextual factors and outcomes associated with
these interventions.

Use Cases involve the description of hypothetical scenarios or
situations where a user interacts with a system or technology
to achieve specific goals or objectives. It typically includes a
detailed walkthrough of the user’s actions, interactions with
the system, and the expected outcomes in various scenarios
(e.g. [CLWM11, GGL∗14, SPEB18]).

Synthetic-User Evaluation simulates user interactions or be-
haviors using algorithms to evaluate how an adaptive visualiza-
tion system responds. Researchers create algorithms that mimic
user actions, such as responding to prompts (e.g. [HKR∗08]) or
selecting targets in visualizations (e.g. [KCGK16]), to assess the
system’s reactions.

Our corpus of surveyed papers indicates that evaluations of user-
adaptive visualizations, whether qualitative or quantitative, happen
post-hoc. That is, there is no evidence of user-adaptive visualiza-
tions that perform a reinforcement learning approach where the in-
tervention are continuously evaluated and adjusted during the vi-
sual exploration. This is an open area for future research.

11. Challenges and Future Research

As with any complex problem, a major challenge in user-adaptive
visualizations lies in comprehensively addressing all of the com-
ponents involved: eliciting information from the user, developing
a user modeling method, creating a user representation, determin-
ing when and what the precise adaptation is needed, and lastly,
performing and evaluating the intervention made. Often, research
in this field tends to focus on specific components rather than in-
tegrating all aspects systematically. Our taxonomy will provide a
framework for future researchers to design adaptive systems that
systematically address all the components.

Additionally, work in this field would benefit from leveraging
advancements in related fields, such as educational and cognitive
psychology. For instance, research in educational psychology can
inform visualization researchers on how to incorporate user charac-
teristics in learning abilities in its user model methodologies. Sim-
ilarly, work done in learning systems and educational technology
can shed light on successful adaptation models that conform to a
broad spectrum of user personas.

System-driven adaptation vs. User-driven customization. Re-
search in user-adaptive interaction often begs the question of why
the system should drive the personalization (i.e., adaptation) in-
stead of enabling users to perform the personalization themselves
(i.e., customization). The main reason is that there is extensive re-
search in HCI showing that users don’t always want or know how
to customize (see [LC19] for an overview). Lallé & Conati [LC19]
provide initial evidence that this is also the case with visualizations.

AI-driven personalization, however, does not mean that the sys-
tem unilaterally decides. Instead, it should be seen as a dialogue
between the system and the user to help them understand how to
use the system’s features best, always leaving the user with ulti-
mate control over what to do. In the context of user-adaptive vi-
sualizations, this will involve investigating how to design effective
interface tools for the user to access and personalize the visualiza-
tions, but also enabling a system to monitor if and how the user
leverages these tools and provides support as needed.

Risks and Limitations. This STAR asserts that by monitoring the
user and intelligently tailoring appropriate information and guid-
ance situationally, we can create next-generation user interfaces
that better support the user’s analytics process. However, one lim-
itation is the potential to have missed relevant works due to our
selection of specific venues and keywords used for the search. This
could mean that some pertinent studies may not have been included
in our review. Also, we have primarily focused on a single user, and
future work is needed to examine how we can apply this pipeline to
multi-user scenarios. Suppose, for example, two users are collabo-
rating. How do we reason about adaptations? Moreover, customiz-
ing the visualization design may frame the user’s mental model in
the task and data relationships [ZK09]. How do we help collabo-
rators bridge the gap between differing mental models of the same
problem?

Although the ability to automatically infer individual character-
istics will open many opportunities for tailoring visualization sys-
tems to suit the user better, collecting and storing such informa-
tion can raise privacy concerns. Researchers and practitioners must
know the potential ethical challenges ahead and take socially re-
sponsive steps to mitigate the effects. For example, future work
should consider challenges such as managing user privacy in a
way that is transparent, understandable, and approved by each user.
Altogether, people’s experiences with user-adaptive interfaces will
depend on their confidence in appropriate data privacy, their safety
from hacking, and their trust in guidance and suggestions. These
are all vital areas of research that require substantial inquiry.

12. Conclusions

In this paper, we presented the state of the art in user-adaptive vi-
sualizations. We deconstruct the adaptation process into five main
components: input, user modeling, user representation, adaptation
assignment, and intervention. For each component, we provide an
overview of guidelines and open areas of research. We also pro-
vide an overview of the different evaluation methods used to assess
the trade-off between providing interventions and possibly induc-
ing cognitive overload. This survey was done through a qualitative
analysis of 91 papers published within the visualization research
community.
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Some of the components of the user-adaptive visualization pro-
cess have been well-explored, while others provide rich opportuni-
ties for future work. In particular, there has been substantial work
in understanding the relationship between user characteristics and
both performance and preference for different visualizations. How-
ever, research on when to actively adapt the visualization is consid-
erably less explored. Other areas of future work include capturing
richer physiological data from the user, modeling user representa-
tions from low-level interaction traces, and generating personalized
visualizations from design guidelines.

We believe our work can provide a road map for practitioners
and researchers in this area, describing the rich space of current
approaches and highlighting open areas for future work.

None of the authors have a conflict of interest to disclose. Data
sharing is not applicable to this article as no new data were created
or analyzed in this study.
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Figure 19: Overview of the preliminary process implemented to
come up with the set of keywords used in our main methodology.

Appendix A

Preliminary Process for our Main Methodology

The first author together with one senior author reviewed represen-
tative papers on user-adaptive visualizations, adaptive interfaces,
and user modeling. We followed both linear- and citation-search
approaches. The linear search focused on finding an initial set of
relevant papers based on specific keywords and phrases as shown
in Table 2 in scholarly literature web search engines (i.e., Google
Scholar and Semantic Scholar). We compiled this list of keywords
and phrases to encompass the concept of adaptive visualization,
spanning both its comprehensive and specific dimensions. After a
first pass identifying relevant ones in terms of closeness to the user-
adaptive visualization topic (15 papers), we moved on to the cita-
tion search by looking at the downstream references for each paper
by reading the related work sections and discerning which ones
seemed relevant to user-adaptive visualizations. This step brought
the count of papers to just over 100, published between 1994 and
2022, for which we manually reviewed the title, abstract, introduc-
tion, and discussion/conclusion to understand the language and nu-
ances representative of the field. The output of this first, exploratory
phase (summarized in Figure 19) is a set of categorized keywords
as shown in Table 1.

Table 2: Initial set of keywords and phrases used for early explo-
ration of user-adaptive visualization research.

• user-adaptive
visualization

• user-adaptive
interaction

• adaptive
visualization

• visualization
generation

• visualization
literacy

• visualization
morphing

• user assistance in
visual methods

• visualization
recommendation

• visualization
decision-making

• visual analysis
recommendation

• adaptive
information
visualization
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Table 3: Selected papers based on their relevance to user-adaptive visualizations and that contain the five components. The filled boxes
indicate the Input, User Modeling, User Representation, Adaptation Assignment, and Interventions
present in the manuscripts.
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Gotz & Wen (2009) [GW09]
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Reinecke et al. (2011) [RMB11]
Mouine & Lapalme (2012) [ML12]
Bostandjiev et al. (2013) [BOH13]

Ahn et al. (2015) [ABH15]
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Table 4: Selected papers based on their relevance to user-adaptive visualizations and that contain only the first three components. The filled
boxes indicate the Input, User Modeling, and User Representation present in the manuscripts.
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