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Abstract— The visual analytics community has proposed several user modeling algorithms to capture and analyze users’ interaction
behavior in order to assist users in data exploration and insight generation. For example, some can detect exploration biases while
others can predict data points that the user will interact with before that interaction occurs. Researchers believe this collection of
algorithms can help create more intelligent visual analytics tools. However, the community lacks a rigorous evaluation and comparison
of these existing techniques. As a result, there is limited guidance on which method to use and when. Our paper seeks to fill in this
missing gap by comparing and ranking eight user modeling algorithms based on their performance on a diverse set of four user study
datasets. We analyze exploration bias detection, data interaction prediction, and algorithmic complexity, among other measures. Based
on our findings, we highlight open challenges and new directions for analyzing user interactions and visualization provenance.

Index Terms—Visual Analytics, Analytic Provenance, User Interaction Modeling, Machine Learning, Benchmark Study

1 INTRODUCTION

Researchers in the visualization community have long viewed inter-
action as an analytic discourse between the analyst and the visual-
ization system [40]. Thus, capturing and analyzing the user’s pas-
sive interactions has been integral to the visual analytics research
agenda [7, 8, 39, 41, 43]. Some believe that this data can provide a
transcript of the reasoning process, informing more effective visual-
ization encodings, and producing better intelligent algorithms to assist
with data exploration, model refinement, etc. [42, 48]. Further, many
have seized the opportunity to leverage machine learning techniques
to decode the information embedded in the user’s interaction log data.
This paper adopts the term used by Xu et al.’s [48] recent survey on
the analysis of user interactions and refers to the general goal of under-
standing the user and their sensemaking process as user modeling.

Although there has been significant progress in developing algo-
rithms that can reveal valuable information about the user and their
analytic process, a unified comparison of the proposed techniques on
different datasets, tasks, and analysis scenarios is lacking. Some sug-
gested methods are presented theoretically without in-depth empirical
evaluation, while others are validated using controlled user studies,
though often with a single dataset. Furthermore, the algorithms are
sometimes proprietary, and the community lacks benchmark datasets
for easy comparison. These issues point to fundamental problems
that can hinder research progress and question the practicality of user
modeling techniques outside of academia.

To address this, we present a computational benchmark study com-
paring previously proposed user modeling techniques from the visual
analytics community. We first narrow the scope to real-time algorithms
that learn from low-level interactions with data points that researchers
can potentially use for providing real-time support during data explo-
ration. Such user modeling techniques typically fall under two broad
categories: (1) data interaction prediction, i.e., inferring data points
that the analyst is likely to interact with in the near future and (2)
exploration bias detection, i.e., detecting data features that are dispro-
portionately explored by the user. These two categories, however, are
not mutually exclusive as the successful detection of exploration bias
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might also infer potential data points the user may interact with and vice
versa. After surveying the body of work, we selected seven proposed
techniques and standardized their input and output specifications to
account for a variety of datasets. In addition to the selected models,
we developed an ensemble model to predict data interaction and detect
exploration bias. We then compared all eight modeling techniques’
performance with four different publicly available user study datasets
that vary in the number of visual attributes shown and the types of tasks
the user study participants performed.

We evaluate the user modeling algorithms based on the success rate
of their data interaction prediction, their exploration bias detection, and
computational complexity. In addition to the comparison, we highlight
the open challenges we discovered. In evaluating these algorithms, we
aim to provide a better understanding to researchers and practitioners
interested in integrating existing user modeling techniques into their
system and to encourage further advances in analyzing user interactions
and visualization provenance. The implementations, pre-processed data
files, and links to the manuscripts and datasets used in this study will
be freely available on GitHub 1 to support reproducibility.

We summarize our contributions as follows:

• Using a unified notation, we provide an overview of existing mod-
eling techniques in the visual analytics community for predicting
data interaction and detecting exploration bias.

• We compare and evaluate the performance of eight techniques
on two aspects of user modeling with four unique user study
interaction log datasets.

• Based on our evaluation, we provide recommendations and new
research directions for analyzing user interactions and visualiza-
tion provenance.

2 RELATED WORK

User modeling techniques can fall into broad categories based on shared
objectives and can exhibit extreme diversity, as presented by the ex-
tensive survey from Xu et al. [48]. For example, researchers have
proposed techniques to infer data interactions [23, 32, 38], various
forms of bias [21, 32, 45], and even user attributes [3, 29]. Addition-
ally, other techniques aim to assist the user by data prefetching [1, 24],
recommending visualizations [22], providing interface guidance [4, 5],
and improving data selection [15, 18]. In our work, we aim to evaluate
existing models within the categories of data interaction prediction and
exploration bias detection. We selected these two categories because of
their broad applicability to varying datasets and system designs.

2.1 Exploration Bias Detection
While exploring datasets and making decisions, humans are susceptible
to cognitive limitations and biases that arise naturally from perception

1https://github.com/washuvis/vis2022usermodels
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and intuition [10, 14]. There are many different types of biases. For
example, one form of bias, confirmation bias, was described by Nick-
erson et al. [37] as interpreting evidence in ways that are partial to
existing beliefs already in mind. Gigerenzer et al. [19] defined cogni-
tive bias as a deviation between human judgment and a rational norm.
Lee et al. [27] define drill-down fallacies as wrongfully attributing a
deviation in trend to a local change, while it is in fact, a more general
phenomenon. Cho et al. [6] investigate the impact of anchoring bias
(i.e. focusing too much on one piece of information) while making
decisions.

This paper focuses on models for exploration bias. Exploration
bias is akin to sample selection bias, a generic phenomenon in social
sciences when the investigator fails to capture a random sample of the
target population [47]. Much like sample selection bias can lead to bi-
ased inferences about a study population, exploration bias can result in
false deductions from the data. Using this as motivation, Wall et al. [45]
introduced Attribute Distribution, which is a metric for quantifying
exploration bias by observing user interactions while inspecting indi-
vidual data points. Their work aimed to draw the connection between
cognitive biases and exploration bias (i.e., cognitive biases can cause
exploration bias), with proposed subsequent solutions for increasing
bias awareness during data analysis [36].

While exploration bias in the context of visual analytics often has a
negative connotation, it may at times be intentional and be interpreted
as a user’s data interest [45]. Other works have investigated several
techniques to detect and quantify exploration bias a user may manifest
while interacting with datasets. For example, Gotz et al. [21] pre-
sented Adaptive Contextualization, a statistical approach to detecting
exploration bias by observing user interactions while filtering high-
dimensional data. In their recent work, Monadjemi et al. [32] detected
exploration bias via Bayesian model selection. While the motivation
behind each of these modeling techniques may be different, they all
share a critical characteristic: in essence, they all compare the distribu-
tion of the underlying data set with the distribution of data points with
which the user has interacted.

2.2 Data Interaction Prediction
This paper also examines algorithms that predict users’ data interac-
tions. There has been several techniques for inferring which data points
the user will likely explore in the future. For example, Healy et al. [23]
dynamically identified and tagged data elements in their visualization
that were of potential interest based on the user’s actions using Bayesian
classification. Battle et al. [1] modeled a user’s sequence of interactions
to pre-fetch data for a map visualization. They maintained a Markov
chain model of interactions and ranked the data for pre-fetching accord-
ing to the likelihood of the users taking actions corresponding to said
data. Similarly, Ottley et al. [38] observed users’ mouse interaction
and succeeded in modeling the attention of users during visual data
exploration with a hidden Markov model. Their algorithm leverages a
user’s observed clicks with a visualization system to obtain next-click
predictions. In addition to bias detection, Monadjemi et al. [32] showed
that their framework could predict future interactions and summarize
analytic sessions. Zhou et. al [49] observed users to develop a model
of their analytical focus and use that model to surface relevant medical
publications to users during visual analysis of a large corpus of medical
records. As evident in this brief overview, there are many variations of
techniques that learns data points that may to relevant to a user by ob-
serving their data exploration. However, the visual analytics literature
lacks a unified comparison among these techniques.

2.3 Evaluation of User Modeling Techniques
There are many ways to evaluate an algorithm or technique, includ-
ing complexity analysis, implementation analysis, and laboratory user
study [34]. The choice of evaluation approach depends on the project
goals and contributions. As a result, we observed a diverse set of valida-
tion methods ranging from crowdsourced user studies and case studies
to interaction simulations (e.g., [33, 38, 49]). For this paper, we utilize
user study datasets to assess how the current modeling approaches
might perform under actual user data to gain insight into their potential

use in a real-time system. Therefore, we review the prior work on
evaluated user modeling techniques with user study datasets.

For example, Ottley et al. [38] validated their model’s ability to
predict future interactions on one user study. While their study validated
the technique successfully, it did not evaluate their technique against
any baselines. Zhou et al. [49] validated their technique’s ability to
identify relevant medical concepts via a user study. They successfully
validated their technique by comparing it to the ground truth elicited
from the study participants and measured a set of usability metrics via
a post-study survey. However, their analysis also did not include any
baselines. Additionally, Gotz et al. [21] conducted a formal user study
to investigate how their technique (Adaptive Contextualization) can
mitigate selection bias. Their user study included two experimental
groups: one with access to bias mitigation features, and one without
access to such features (baseline). With their work being one of the
earlier works in detecting selection bias, they would not have been able
to compare against other techniques that were proposed in later years.

Most similar to our work, Monadjemi et al. [32] evaluated the per-
formance of their technique (Competing Models) with two existing
techniques by Ottley et al. [38] and Wall et al. [45] for data interaction
prediction and bias detection, respectively. Their evaluation, while
including baselines and multiple user studies, was still limited in that it
did not include all existing techniques as baselines and did not consider
as many user studies. We extend their work by standardizing and com-
paring the performance of four additional user modeling techniques
with two additional datasets. Moreover, we introduce an ensemble
approach that combines the selected modeling techniques for both ex-
ploration bias detection and data interaction prediction. We hope that
our analysis of these techniques will shed some light for researchers
and practitioners who are interested in utilizing them.

3 PURPOSE AND SCOPE

This paper presents a benchmark study to compare the user modeling
methods proposed in the visual analytics literature, using publicly avail-
able user interaction datasets. As demonstrated in section 2, the body
of work on analyzing user interactions is diverse. However, instead
of a comprehensive comparison of all existing user models, this pa-
per focuses on techniques for predicting data interaction and detecting
exploration bias. These categories of user modeling algorithms are com-
plementary. For example, inferring the next data interaction could aid
exploration bias detection, and we can use exploration bias inferences
to identify data points relevant to the user’s current tasks. Furthermore,
we can observe from the literature that researchers have already de-
veloped algorithms that can already perform both tasks (e.g., [32, 38]).
Additionally, we selected these two user modeling categories because
of their potential application in providing real-time support for data
exploration. We pose the following research questions to guide our
evaluations:

RQ1: Which algorithm is most accurate at predicting next data
interactions for dataset with (i) goal-driven tasks and (ii) open-
ended tasks?
RQ2: Which algorithm is most accurate at detecting exploration
bias for datasets with (i) goal-driven tasks and (ii) open-ended
tasks?

3.1 Algorithm and Dataset Selection
To form our collection of algorithms and datasets discussed in this
paper, we started with the pool of papers that were discussed in Xu et
al.’s [48] 2020 survey on the analysis of user interactions and prove-
nance in visual analytics. The authors built a corpus of 105 manuscripts
with seed papers collected from provenance-related prior work, sup-
plemented by manually scanning all issues of major journals and all
proceedings in the Visualization and HCI communities from 2009 to
2019. We accounted for the papers published around the same time
and after the survey by performing a forward citation search on the
manuscripts in the survey and the survey itself, resulting in a corpus of
110 manuscripts.

We narrowed the pool to the final selection of seven papers with
algorithms within scope [21, 23, 32, 33, 38, 45, 49]. To the best of our



Table 1: A summary of the characteristics of the user models in this study and their overall success on the tested datasets for next interaction
prediction.
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Inference Prediction Accuracy
ENSEMBLE O(2dt+ 2dd3) O(nd2) 82%
k-NN: k-Nearest Neighbors [33] None O(nd2) 65%
B-BN: Boosted Naive Bayes [23] O(nd) O(nd) 59%
AF: Analytic Focus [49] O(cd) O(nd) 59%
HMM: Hidden Markov Model [38] O(p) O(np) 67%
CM: Competing Models [32] O(2dt+ 2dd3) O(nd2) 68%
AD: Attribute Distribution [45] None O(d)
AC: Adaptive Contextualization [21] None O(d)

c - # of unique values for an attribute (specific to AF [49]); d - # of data attributes; n - # of points in the underlying dataset;
p - # of particles (specific to HMM [38]); t - # of observed interactions;

knowledge, this paper includes all real-time algorithms for detecting
data interaction prediction and exploration bias that are (i) freely avail-
able, (ii) have precise code, or pseudocode descriptions, or (iii) can
successfully be implemented following a reasonable amount of trou-
bleshooting and debugging. A few edge cases could theoretically be
included but are excluded from this analysis. For example, the Fore-
cache system proposed by Battle et al. [1] captures movement data as
a user navigates a large image, predicts where they will likely explore
next, and uses this prediction to drive a prefetching algorithm. We can
theoretically reformulate this problem and use the expected next move
to infer the user’s interaction, assuming the tasks is navigation-related.
However, we did not include this or any other algorithm that required
such reformulation.

We used a similar process for our dataset selection. We manually
examined our corpus of 110 papers to identify manuscripts with user
studies and publicly available datasets. Four user study datasets logged
participants’ interactions with data elements throughout the study ses-
sion. We included all four datasets in our evaluations.

4 USER MODELING METHODS

In this section, we provide a brief overview on the existing modeling
techniques considered in our benchmark study. For most of the selected
modeling techniques, their implementations were not readily available.
For ones that were readily available, the implementations were hard-
coded to work with specific datasets. In order to easily evaluate the
modeling techniques across multiple datasets, we implemented every

Table 2: Notations used in this section.

Set Notation Description

D = {x1, x2, ..., xn} The set of data points visualized.
A = {a1, a2, ..., ad} The set of data attributes.
E = {e1, e2, ..., em} The set of interaction types

(e.g. hover, click, etc.).
I = {(xi,t, c) | t = 1, 2, ...} The sequence of interactions in a ses-

sion. (xi,t, c) denotes taking action
c on data point xi at time step t.

fr : D 7→ [0, 1] The data ranking function for next
data interaction prediction. D, is
mapped to a numerical value be-
tween 0 (low) and 1 (high).

fb : A 7→ [0, 1] The bias function where the set of
attributes, A, is mapped to a numer-
ical value between 0 (low) and 1
(high).

technique with a standardized syntax and input/output format.
The icon indicates that the technique is capable of data interac-

tion prediction. The icon indicates that the technique is capable of
exploration bias detection. We compare a total of eight user models,
based on a variety of theoretical approaches and summarized in Table 1.
Of the algorithms we selected, three can only infer next data interaction
(k-Nearest Neighbors [33], Boosted Naive Bayes [23], and Analytic
Focus [21]), two can only detect exploration bias (Attribute Distribu-
tion [45] and Adaptive Contextualization [21]), and two can infer both
(Hidden Markov Model [38] and Competing Models [32]). In addition
to the selected algorithms, we also introduce and evaluate an ensemble
model, developed by averaging the output of all modeling techniques.

Each model assumes there is a visualization of a dataset
D = {x1, x2, ..., xn}, where each data point in D corresponds to a
visual element. Each data point xi ∈ D has d attributes which may
be continuous, categorical, or ordinal. Users may take different ac-
tions while interacting with data points using the visualization (i.e.
click, hover, etc.). Thus, the models also assume a non-empty set of
interactions supported by the system as C = {c1, c2, ...}. As users
interact the visualized data points, they maintain a set of observation
I = {(xi,t, c) | t = 1, 2, ...}, where xi,t denotes an interaction of type
c with data point xi at time step t.

4.1 k -Nearest Neighbors Classifier as seen in [33]
A straightforward method for learning users’ data interest by observing
interactions is to train a k-nearest neighbors (k-NN) binary classifier.
This approach assumes that proximity drives a user’s exploration
patterns. Monadjemi et al. [33] built a k-NN classifier that relies on a
notion of distance between data points and computing the matrix of k
nearest neighbors for every data point given the defined distance for-
mula as a pre-processing step. The complexity for this pre-processing
step is O(n2d). Refer to Table 1 for more information and complexity
variables. This model assumes that every data point in in the dataset,
xi ∈ D, has a binary label yi ∈ {0, 1}. A label of yi = 1 means the
data point xi is relevant to the task at hand, whereas a label of yi = 0
means xi is irrelevant. By considering the labels of the nearest neigh-
bors, this model is able to provide us with the probability of any given
point being relevant in light of past observations: Pr(yi = 1 | xi, I).
Hence, we use this posterior belief as our ranking function:

fr(xi) = Pr(yi = 1 | xi, I). (1)

4.2 Boosted Naive Bayes Classifier as seen in [23]
Healey et al. [23] propose a naive Bayes classifier for maintaining
a belief over users’ interest in data points. This approach tracks the
frequencies of attributes explored and assumes that the user’s latent
data interest is related to the dataset attributes’ occurrence rate. In



a similar formulation as the k-NN approach, each data point xi ∈ D
has a binary label yi ∈ {0, 1}. A label of yi = 1 means the point xi

is relevant to the task at hand and a label of yi = 0 means it is not
relevant. The goal of this approach is to reason about the unknown
labels in light of frequencies of observations calculated via the Bayes’
law:

Pr(yi = 1 | xi) ∝ Pr(xi | yi = 1)Pr(yi = 1). (2)

Extending xi to each of its individual d dimensions and assuming
conditional independence among attributes, we get:

Pr(yi = 1 | xi,1, xi,2, ..., xi,d)

∝Pr(xi,1, xi,2, ..., xi,d | yi = 1)Pr(yi = 1)

=Pr(yi = 1)

d∏
j=1

Pr(xi,j | yi = 1),

(3)

where xi,j denotes the jth attribute of the ith data point. Therefore, we
get the ranking function as:

fr(xi) = Pr(yi = 1)

d∏
j=1

Pr(xi,j | yi = 1). (4)

While Naive Bayes often performs as well as more sophisticated
models in practice [26], its performance can further be improved by
boosting. As recommended by Healey et al. [23], we used AdaBoost to
train a stronger classifier.

4.3 Analytic Focus Modeling as seen in [49]
Zhou et al. [49] propose a technique for modeling analytic focus (AF)
during a session. Their technique is based on an abstract notion of con-
cepts defined as “meaningful data attribute[s] in the problem domain.”
This technique tracks user focus on each of the concepts by observing
their interactions and maintain an importance score for each concept.
The model assumes that the user’s latent data interest is related
to the occurrence rate of discrete concepts observed in their data
interactions. With concepts being left open for practitioners to define
in their particular domain, here, we let each unique value appearing in
the discrete attributes of the dataset to represent a concept, performing
a pre-processing step on continuous attributes to convert them into
discrete bins.

Each interaction α is defined by two values: an initial importance
score Iα(0) and a persistence score Pα. In a sense, Iα(0) refers to how
intentional an action is and how informative it is in revealing analytic
focus while Pα is a measure of how long the visual changes resulting
from action α remain. Using these parameters and the Ebbinghaus for-
getting curve [12, 13, 35], the authors define the per-action importance
score function t time steps after an action is taken as:

Iα(t) = Iα(0)× e
− t

Pα . (5)

Using the equation above, the authors propose an additive model for
calculating the importance score for each concept c at time τ :

Ic(τ) =
∑

(xi,t,α)∈Iτ,c

Iα(τ − t), (6)

where Iτ,c denotes the set of interactions with points involving concept
c up until time step τ . Considering that each data point xi ∈ D may
subscribe to multiple concepts (one concept per dimension in our case),
we extend this method so that the importance of a data point is the
product of the importance of its individual concepts. In other words,
given a data point xi ∈ D and the current time step τ ,

fr(xi) =
∏

c∈C(xi)

Ic(τ), (7)

where C(xi) is the list of concepts with which xi is associated.

4.4 Hidden Markov Model as seen in [38]
Ottley et al. [38] propose a Hidden Markov Model (HMM) approach
for modeling user attention during visual exploratory analysis. Their
approach assumes that the visual features of the interface will drive
the user’s attention (it considers all possible combinations) and
their interactions such that attention at time t + 1 will be similar to
the observation at time t . They constructed a hidden Markov model,
presuming the user’s behavior evolves under a Markov process (that is,
the behavior at a particular time only depends on their behavior at the
previous time step), and interaction events are generated conditionally
independently given this sequence of attention shifts. The set of visible
visual features (e.g., color, position, size, etc.) creates the mark space
and the latent states. Further, their algorithm uses particle filtering [11,
20] to sample from the model’s posterior distribution and predict the
user’s attention for the next time step. Integral to this technique is a
bias vector that captures the relative importance of the mark space
components. We use the particle filter output to predict next data
interaction and the bias vector for bias detection.

4.5 Competing Models as seen in [32]
Monadjemi et al. [32] propose a Bayesian model selection approach
for detecting exploration bias and inferring next data interaction during
visual exploratory analysis. This approach, called Competing Models
(CM), enumerates a set of probabilistic models each of which represent
exploration based on a subset of data attributes. Given a dataset with d
attributes, they enumerate the model space M = {M1,M2, ...,M2d}
where each model represents exploration based on one subset of at-
tributes. Thus, it assumes and one or more data attributes (it con-
siders all possible combinations) are sufficient to represent a users
data interest. As interactions arrive, they maintain a belief Pr(Mi | I)
which is interpreted as the viability of model Mi in explaining user
interactions. To rank the data points to the task at hand in light of past
interactions, they use Bayesian model averaging to get:

fr(xi) = Pr(xi | I) =
2d∑
j=0

Pr(xi | I,Mj). (8)

To quantify bias towards each attribute, they use the law of total proba-
bility as follows:

fb(ai) =
∑

Mj∈Mai

Pr(Mj | I), (9)

where Mai ⊂ M denotes the set of models involving attribute ai.

4.6 Attribute Distribution as seen in [45]
Wall et al. [45] propose a set of metrics for quantitatively detecting
various types of cognitive biases. The most relevant to our work is
the metric they call attribute distribution. Their approach assumes
that in an unbiased exploratory session, the distribution of values
explored by the user will resemble the distribution of the underlying
data. It relies on well-known statistical tests, Chi-Square [31] and
Kolmogorov–Smirnov [30], which are used for discrete and continuous
attributes respectively. In each case, the test takes the underlying data
as well as the set of points with which the user has interacted as inputs
and returns a p-value indicating whether or not the two samples could
be reasonably drawn from the same distribution. Then, they define their
attribute distribution metric for a given attribute ai ∈ A to be:

fb(ai) = 1− p-valueai . (10)

4.7 Adaptive Contextualization as seen in [21]
Gotz et al. [21] propose Adaptive Contextualization, a metric to mea-
sure selection bias in real-time. In order to detect such biases, they
propose measuring the Hellinger distance between the datasets before
and after filtering. The Hellinger distance is a statistical measure de-
signed to quantify the similarity between two distributions. Thus, this



Fig. 1: A summary of the characteristics of the selected user interaction datasets and the performance of the user modeling techniques with said
datasets. We represent success using each technique’s performance at top-100 points for next data interaction prediction.

approach assumes that we can detect bias by comparing the ob-
served distribution to the expected data distribution. The authors
propose using the Hellinger distance defined for discrete probability
distributions with a pre-processing step to discretize the continuous
attribute into discrete bins.

Consider a particular dimension of interest, ai, represented as a set
of m discrete values {v1, v2, ..., vm}. The distribution of these values
in the underlying data and interaction data are {p1, p2, ..., pm} and
{q1, q2, ..., qm} respectively. We compute the Hellinger distance as:

fb(ai) = H(Dai , Iai) =

√√√√1

2

m∑
j=1

(
√
pj +

√
qj)2, (11)

where Dai and Iai denote only the ai attribute of the underlying and
interaction datasets respectively. While this technique was intended
to detect selection bias (i.e. before vs. after filtering), we adopt it to
quantify exploration bias.

4.8 Ensemble Approach

We anticipate that no model will be able to correctly recognize rel-
evant points in every system, task, or dataset. This phenomena was
also observed by the machine learning community which led to the
development of ensemble methods [9, 44]. Ensembles are a collection
of classification models combined to construct a model with higher
predictive power. Using this approach, we consider a final technique
which combines predictions from all five techniques that predict data in-
teractions and all four techniques that detect exploration bias reviewed
in this paper. To predict next data interaction, for a given data point,
xi ∈ D, we compute the ranking function, fr(xi), using each of the
modeling techniques and average the ranking values to get the ensemble
prediction. Then, we proceed with ranking the data points, a process
identical to the one in the preceding modeling techniques. Similarly, we
average the bias values towards each data attribute from each modeling
technique to get the ensemble prediction for exploration bias.

5 USER STUDY INTERACTION LOGS

We used four publicly available interaction logs from user study ex-
periments with visualization systems. These studies contained varying
interfaces as well as task designs. We aimed to evaluate and compare
the performance of the user modeling techniques with a variety of
interaction logs, ranging from studies with very directed and specific
tasks to the polar opposite, open data exploration. Refer to Figure 1
for a detailed summary of the characteristics of each dataset.

5.1 STL Crimes as seen in [38]
The STL Crimes dataset involved a highly specified task thus captur-
ing less exploration noise. We selected this dataset as it represents
the best-case observational scenario for user modeling.

Curated by Ottley et al. [38], this dataset consists of 1,951 crime
instances reported in the month of March 2017 with a total of eighteen
attributes. Each instance of crime on the map was displayed as a dot
with a position and color, indicating the location and type of the crime
respectively. Eight types of crime exist in the database: homicide, theft-
related, assault, arson, fraud, vandalism, weapons, and vagrancy. 30
participants were recruited from Mechanical Turk and they completed
three categories of directed search tasks that were designed to encourage
them to either click on: (1) Type-Based data points with similar crime
categories (e.g. Homicide, Assault, etc.), (2) Location-Based data
points that are within in the same vicinity, or (3) Mixed data points
that are of the same crime category and in the same vicinity. Each
participant completed a total of six tasks, two from each category. Since
the authors specified to the participants target attributes to interact with,
this provides us with a notion of ground-truth bias. In their user study,
Ottley et al. [38] captured mouse click data as participants interacted
the visualization. Consistent with Ottley et al. [38], we filtered the data
to hold only the interactions of participants who successfully answered
the task questions and created three data subsets: 28 user sessions for
location-based tasks, 23 for typed-based, and 27 for mixed.

5.2 Vastopolis as seen in [33]
We selected the Vastopolis dataset because of the attributes in the
dataset. It is the only user interaction dataset in this study that
includes unstructured text.

Inspired by the 2011 VAST Challenge, Monadjemi et al.’s [33]
study describes a major epidemic that started in the fictitious city of
Vastopolis. Participant’s interacted with a map of Vastopolis with 3000
geolocated tweet-like data. In addition to the social media posts, the
map display major roadways, waterways, and landmarks in the city.
They recruited 130 participants from Amazon Mechanical Turk and
tasked each participant to search through the dataset of microblogs
via an interactive map and bookmark as many posts containing illness-
related information as possible. Following the same pre-processing step
as the authors, 74 user interaction logs remained from the control group
of the study. The only interaction type we considered in the interaction
logs were intentional “bookmarks” of the microblogs.

5.3 Political Committee as seen in [46]
The Political Committee user study examined cognitive and explo-
ration bias as participants selected their picks for a hypothetical



committee. Thus we selected this dataset as a candidate for exam-
ining exploration bias.

Wall et al. [46] generated a dataset of 180 fictitious politicians, repre-
senting the composition of the Georgia General Assembly. The dataset
contains three discrete and six continuous attributes that characterizes
each politician. In the study conducted by Wall et al. [46], the authors
had users interact with an visualization system that supports the ex-
ploration of the fictitious political committee data. There were two
versions of the visualization system: a Control version of the interface,
and an Intervention version of the interface, which was modified to
visualize traces of the user’s interactions with the data in real-time. To
assess the effectiveness of visualizing the user’s interaction traces, the
authors performed an in-lab study with 24 participants. They were
tasked with selecting a committee of 10 candidates to review public
opinion in Georgia on the controversial bill that bans abortion after 6
weeks. In order to observe the raw, inherent biases of the users, we
selected the interaction logs of those in the Control group (total of 12
participants). The authors recorded several types of interactions the
user can make with the interface such as hovers, changing of axes on
the scatterplot, committee selection etc. We filtered the interaction log
for each user to contain only committee selection interactions with the
data points.

5.4 Boardrooms as seen in [16]
The Boardrooms study did not involve a particular task, but instructed
the participants to freely interact with the visualisation. We expect this
dataset to include the highest levels of exploration noise.

Feng et al. [16, 17] utilized the visualization, “Inside America’s
Boardroom,” which was published by the Wall Street Journal [28] in
2016. This point-based visualization displays seven different attributes
to the user: market capitalization, ratio of unrelated board members,
ratio of female board members, average age of board members, average
tenure of board members, and median pay of board members. The study
adopted an open-ended approach and observed the user’s interactions
as they explored the dataset through the visualization. The interaction
log contains a succession of hovers each user made on different data
points. To account for unintentional hovers, we followed the same
approach as Monadjemi et al. [32], each user’s session was filtered only
include hovers that lasted for over one second. Additionally, we only
considered sessions that consisted of more than three hovers, resulting
in a total of 39 user sessions.

6 EVALUATION MEASURES

In this section, we describe the performances measures we used to eval-
uate the modeling techniques’ accuracy in predicting data interactions
and detecting exploration bias with the four user study logs. We note
that 2 out of 4 interaction logs included a single interaction type. In
particular, the STL Crimes captured only mouse clicks and Boardrooms
recorded mouse hovers alone. Vastopolis included bookmarks and hov-
ers, but recording inconsistencies in the logging made it impossible to
integrate the two interaction modalities. Thus, our evaluation focused
solely on predictions based on the more intentional “bookmark” interac-
tion. Finally, the Political Committee dataset included the most diverse
interface and data interactions ( e.g., hovers, reconfiguring, committee
selections). For consistency, we select a single interaction observation
(committee selections), and the algorithms’ predictions are limited to
their observations. Suppose, for example, the algorithm’s observations
are limited to mouse clicks. Then the algorithm can only predict the
next click or detect data exploration bias among the clicked data points.
In the case of Political Committee, this means that the algorithms can
only observe when the user selects a committee member and must make
predictions about the next committee selection or estimate selection
biases solely from the limited observations.

6.1 Evaluating Data Interaction Prediction
We developed a standardized probabilistic output for each algorithm
to compare the models to each other. Specifically, the techniques treat
every data point as a potential candidate for being most relevant to the
user’s data interest. Thus, each method outputs the ranking probability

for each data point given its observations. This output represents the
technique’s unique interpretation of the data points that the user will
likely interact with. For example, k-NN assumes that the data points
most relevant to the user will minimize some measure of distance while
AF examines the frequency on concepts from the past interactions.

Given the model’s probabilities, we can rank each data point based on
the algorithm’s belief. We report top-κ data retrieval for the algorithms
for κ ∈ {1, 5, 10, 20, 50, 100} which we will refer to as the prediction
sets. We considered a variety of set sizes. For example, an alternative is
to use percentages instead of a fixed values. However, for large datasets,
retrieving a small percentage to the dataset can still be overwhelming to
the user if we consider the goal of provided real-time analysis support.
This standardized output enables us to evaluate and compare each
technique’s ability to predict the next data interaction. We record the
following measures for every interaction the datasets:

• SUCCESS: ∈ {0, 1}, binary value for whether the next data
interaction was included in the prediction set for all values of κ.

• RANK: the ranked position of the next observed interaction such
that lower is better.

6.2 Evaluating Exploration Bias Detection
Evaluating each technique’s ability to detect exploration bias poses a
unique challenge, in that ground truth is not always readily available.
When evaluating data interaction prediction, we had access to a notion
of success: we wanted to predict next data points with which the user
interacts, and we were able to verify our ability to do so by observing
the data interaction point. For bias selection, however, such ground
truth is not as easy to access, especially for user study datasets with
open-ended tasks. With the Political Committee dataset collected by
Wall et al. [46], for example, each user can exhibit their own set of
biases as they explore the data.

For this set of evaluations, we use two datasets: STL Crimes sepa-
rated into location-based, type-based, and mixed subsets and Political
Committee. The STL Crimes user study involved a directed task, asking
participant to interaction with specific portions of the data, inherently
resulting in biased data exploration. For example, the type-based task
instructed participants to inspect all “Arsons” and note the time of
day they occurred. We used the specific task as the ground truth. In
our evaluation, an algorithm successfully detects exploration bias if
its outputs indicate data attributes related to crime location, type, or a
mixture model of type and location for location-based, type-based, and
mixed respectively.

For Political Committee, two researchers performed qualitative cod-
ing on each study participants’ committee selections, following best
practices [2]. We used an iterative approach. First, the coders reviewed
a single participant’s selections and density plots showing the attribute
distributions for a given set of interaction logs and the original data
distribution. Their goal was to identify evidence of data bias in the

Fig. 2: Comparing participant Lima’s interactions (foreground) to the
full dataset distribution (background). Both coders reported no sig-
nificant difference between the two distributions, indicating no bias
detected. The result were similar for all 12 study participants from [46].



Fig. 3: We evaluated each model’s performance with two metrics: (top) average success rate across all the tasks in each user study dataset for
varying values of the prediction set size and (bottom) average rank of the next data interaction of the user modeling techniques.

observed selections. Evidence of data bias was determined if the at-
tribute distributions for a given set of interaction logs was different than
original data distributions. Next, the coders established a codebook
from this first round and independently coded all twelve participants’
interaction logs. After inspecting each of the twelve study participants,
both coders agreed that there was no observable bias in the any of the
interaction logs. For example, Figure 2 compares study participant
Lima’s data selection to the individual attribute distribution. No signif-
icant difference was observed between the two distributions for each
attribute. Although the coding sessions detected no bias, we included
this analysis to assess the algorithms’ performance in detecting bias
when none exists.

7 RESULTS

7.1 Data Interaction Prediction

Figure 3 shows the models’ accuracy across different values of κ ∈
{1, 5, 10, 20, 50, 100}, the size of the prediction. We analyzed each
algorithm’s success rate at predicting the next observed interaction, cal-
culating the overall success rate for all available user interaction traces
for each dataset as

∑
success÷

∑
predictions. For simplicity, the

results in this section focused on κ = 100, i.e., the algorithm picks the
100 points with the highest rankings for the next interaction.

STL Crimes: The top row of Figure 3 shows the three subtasks in the

in STL Crimes dataset (location-based, type-based, and mixed). We can
observe that most of the techniques can predict the next data interaction
point with a high success rate at κ = 100, which represents 5% of the
underlying data. For location-based tasks, HMM and CM are the best-
performing models, with success rates of 95% and 94% at κ = 100,
respectively. With the type-based task, ENSEMBLE performs the best
with a success rate of 93% at κ = 100. For the mixed-based task,
ENSEMBLE outperforms all the other models, successfully predicting
the next data interaction 98% of the time.

Vastopolis: The STL Crimes user study was highly directed, asking
users to perform specific tasks that lead their exploration. On the
other hand, the Vastopolis task was less directed, involved a larger
data volume, and included textual data (participants interacted with
Tweet-like data). The selected models are unable to reach high success
rate for data interaction prediction, and success rates were consistently
less than 50% at κ = 100 points. Nonetheless, ENSEMBLE and AF
perform the best with this interaction log dataset.

Boardrooms: The user study sessions with the Boardrooms dataset
were highly open-ended. Due to the open nature of the task, all of the
models had difficulty achieving high success rate for data interaction
prediction. HMM outperforms all the other modeling techniques with a
success rate of 51% at κ = 100.

Political Committee: With the Political Committee interaction logs,



Fig. 4: Each block represents a certain time t within the observed interactions. The color represents the top-ranking attribute and the transparency
level represents the technique’s confidence. ( indicates that an assumption of the Chi-Square test was not met.)

we wanted to stress-test the modeling techniques and observe their
performance on set of minimal, but intentional interactions. However,
is it important to note that the dataset set is comparably small, with 180
fictitious politicians. CM and AF showed promising performance with
success rates of 67% and 66% at κ = 100, respectively.

7.2 Exploration Bias Detection
For the evaluation of bias detection, we chose the two following interac-
tion datasets: STL Crimes and Political Committee. These two datasets
were chosen as both studies either aimed to encourage specific biases or
elicit the users’ inherent biases during data exploration. Although we
include the results of AD in this section, we note that its performance
may be unreliable as one of the Chi-Square test assumptions was not
met. The Chi-Square test assumes that: the value of the expected cell
should be 5 or more in at least 80% of the cells, and no cell should
have an expected of less than one [25].

Political Committee: Each algorithm outputs a bias value for the
attributes in the dataset. For example, Political Committee has nine
attributes including (age, gender, and occupation, etc.) and based on the
assigned values, we can rank the attributes by the techniques’ bias belief.
For simplicity, Figure 4 and the analysis in this section considers only
the attribute with the highest bias belief after each user’s observation.
As detailed in section 6.2 our qualitative coding revealed no significant
differences between the distribution of values explored by the user and
the underlying data distribution, meaning no ground-truth bias was
detected for every session. Although there is no evidence of exploration
bias, the top of Figure 4 shows the top-ranking bias found by each
technique for every user throughout their data exploration. The absence
of a ground-truth bias is potentially depicted by the lack of agreement
among the techniques for the top-ranking bias. However, we see some
agreement for Lima, as the techniques believed their exploration was
biased towards the occupation attribute.

STL Crimes: The STL Crimes user study visually displayed three

attributes (longitude, latitude, and type of crime) and included three
subtasks (location-based, type-based, and mixed). Since users were
tasked to specifically interact with subsets of the data, we set these
attributes as ground-truth biases. To calculate the bias value of location,
we multiplied the bias values for longitude and latitude. To calculate
the mixed bias value, we multiplied the location bias with the bias value
for type of crime. The bottom row of Figure 4 shows the aggregated
top-ranking bias among the users over time. For both location-based
and type-based tasks, all of the modeling techniques were able to
accurately determine the attribute that users were most biased towards.
However, for the mixed task, we observed that AD and CM were the
only modeling techniques that detected that the users were interested
in both type and location attributes. For ENSEMBLE, AC, and HMM,
the techniques believed the users were focused on only type-based and
only location-based attributes, respectively.

8 DISCUSSION

This study compared eight algorithms for data interaction prediction
and exploration bias detection across four user study datasets. Perhaps
the most salient finding is there is no clear ‘winner.’ In particular, we
found that no single model excelled with all datasets and the differences
between the top-ranking techniques are small.

8.1 Insights from Data Interaction Prediction Results
The STL Crimes data subsets demonstrate that the models generally
perform relatively well when the tasks are highly-specified and have
limited exploration noise. We use STL Crimes to represent a best-case
modeling scenario. Equally important, our evaluation included datasets
that were selected to test the algorithms’ robustness. In particular,
Vastopolis includes unstructured text, Boardrooms involves an open
exploration task, and Political Committee presents a limited observation
window with 10-16 interactions per participant. We can observe that the
models’ success rates fell drastically with these less directed and open-
ended user study datasets. Still, there are a few noteworthy discoveries



from this analysis. For example, AF [49] (developed initially for textual
data exploration) achieved the highest overall success rate with the
Vastopolis dataset, the only dataset with unstructured text. In addition,
HMM [38], surpassed the others on the only dataset for which the
task was entirely open-ended. However, in both instances, the overall
success rates were relatively low.

Given the high variability in the success rates, we introduced an
ENSEMBLE approach [9, 44] by averaging the computed probabilities,
allowing each model to vote for the data points they believe would best
match the users’ next data interactions in light of its observations. Then,
we rank the data points based on their probability mass and select the
top-κ accordingly for predictions. The ENSEMBLE model was among
the top predictors for all but one dataset. We saw that averaging the
predictions resulted in ENSEMBLE achieving the second worst overall
performance with the Political Committee dataset, which we included
to represent a limited observation scenario. Although we observe
an overall improved performance in data interaction prediction with
ENSEMBLE, especially when κ is small, we do note that this approach
can be costly to compute and may not be suitable for real-time systems.

8.2 Insights from Exploration Bias Detection Results

The STL Crimes dataset also provided a convenient means for evalu-
ating exploration bias. In particular, the three data subsets involved
tasks in which the study participants either focused on a specified lo-
cation, data type, or a mixture of the two, allowing us to use these as
ground truths. All five tested algorithms successfully identified that par-
ticipants disproportionally allocated interactions toward location and
type-related attributes. However, the most interesting finding relates
to the mixed task data subset. Specifically, we can observe that only
CM [32] and AD [45], accurately detected that the task elicited a mixed
bias. Furthermore, the exploration bias detection findings are notably
insightful for the CM and HMM techniques – the only two algorithms
capable of both data interaction prediction and exploration bias detec-
tion. Although both algorithms achieved more than a 90% success rate
in predicting the next data interaction at κ = 100, the exploration bias
detection results provide further insight into the models’ beliefs and
how they produced their data relevance rankings. Markedly, correctly
identifying the mixed nature of the task meant that CM was one of the
best data interaction predictors, second to only ENSEMBLE for this data
subset. In contrast, misclassifying the task as location-based resulted in
an overall lower prediction performance for the HMM approach.

Although our qualitative coding failed to detect exploration bias
in the committee picks from participants in the Political Committee
dataset, we included the evaluation results to assess the algorithms’
predictions in light of unbiased interaction traces. We observed that
all the models presented false positives, often with high certainty, as
indicated by the opacity of the blocks in Figure 4. It is noteworthy that
the one underlying assumption of some of the models is that the user
is always biased. For example, the HMM algorithm explicitly includes
bias in the algorithm’s specification. Specifically, it maintains a bias
probability for each feature in the dataset, allowing the algorithm to
capture the likelihood of bias toward one or more data features. CM
is the only algorithm that directly encodes the potential for no bias.
The algorithm tracks bias by building a model for all possible feature
subsets, including the null set, representing no potential exploration
bias. However, the null set is only one of the numerous model choices
considered in CM, making it an unlikely pick.

Altogether, this underlying assumption that the user’s interaction
is always biased has both positives and negatives for real-world ap-
plications. On the one hand, we believe that identifying the features
that the user disproportionately explores drives the algorithms’ suc-
cess in data interaction prediction. Also, it is potentially a reasonable
assumption for many exploration scenarios. On the other hand, the
false positives can erode the user’s trust in the algorithms, especially
in proposed applications related to helping the user recognize their
own exploration bias or recommender systems [21, 45, 46]. That said,
a potential solution exists within two models, AC [21] and AD [45],
which leverage statistical methods for hypothesis testing in their bias
detection. If used as intended, a failure to reject the null hypothesis

provides evidence of no bias. However, practitioners and researchers
should use the appropriate tests for the given data and verify that the
data meet their assumptions.

8.3 Challenges and Limitations
There were several challenges we faced when preparing to perform a
unified comparison of these models. For example, implementations
of the techniques were not readily available. We invested time in
gaining an understanding of all the techniques and standardizing the
implementations to handle various datasets. We note that we are not
able to completely replicate the performance of CM and HMM on
data interaction prediction with the STL Crimes dataset that we see in
Monadjemi et al [32]. We believe that the differences in performance
are likely due to our hyperparameters selections. When deploying
algorithms in real-world settings, it is important to gather data and tune
hyperparameters. However, we excluded this step in our work as the
datasets were small, presenting a high risk for overfitting. Instead, we
used our domain knowledge to make conscientious decisions about
each model’s hyperparameters, which are all available and adjustable
in our codebase.

Although we selected a diverse collection of datasets, we acknowl-
edge that they do not represent many visual analytics scenarios. There-
fore, we take care in reporting our observations and hesitate to make
broad statements. Further, we were limited by the small number of
interaction datasets that are publicly available, especially those with
ground truths. This highlights important considerations for balancing
ecological validity where the ground truth is not known or may not
exist, and having some measure of success for evaluation. Determining
ground truth when evaluating bias in open-ended tasks is not trivial. A
call for more guided user studies with built-in biases may be needed so
that researchers can further evaluate bias detection algorithms.

9 FUTURE DIRECTIONS

Despite our limitations, our work is a step forward in evaluating user
modeling techniques proposed in the visual analytics community and
opens possibilities for future work in this area. For example, our evalua-
tions only involved datasets with a single interaction type, even though
some of the modeling techniques are able to or have the potential to
handle multiple types of interactions [32, 38, 49]. Although our imple-
mentations did not include this feature, future work could extend this
benchmark study with the added ability to learn from multiple types of
interactions with data points. Further, we primarily focused on quanti-
tative measures, but there are other factors beyond accuracy that might
affect the appropriateness of a technique for a given user modeling
scenario. Factors such as speed, trustworthiness, and flexibility can
be important considerations to explore in future evaluations of user
modeling techniques.

10 CONCLUSION

In this paper, we present a computational benchmark study that provides
a unified comparison of user modeling techniques for data interaction
prediction and exploration bias detection. We implemented standard-
ized versions of seven previously proposed user modeling techniques
that learns from a user’s low-level interactions in real-time. Addition-
ally, we developed an ensemble approach by averaging the models’
predictions. We then evaluated the performance of all these techniques
across four different interaction logs for data interaction prediction/data
ranking and exploration bias detection. We found that there is no clear
‘winner’ among the modeling techniques, but our analysis highlights the
tasks and datasets that elicited the best performance for each technique.
Finally, we discuss the open challenges for user modeling and evalu-
ations. This work is a step towards gaining an understanding of user
modeling techniques within the visual analytics community and we
hope that it encourages further advances in analyzing user interactions
and visualization provenance.
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